These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37270943)

  • 1. Deep fuzzy mapping nonparametric model for real-time demand estimation in water distribution systems: A new perspective.
    Zhang Q; Yang J; Zhang W; Kumar M; Liu J; Liu J; Li X
    Water Res; 2023 Aug; 241():120145. PubMed ID: 37270943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maintaining the long-term accuracy of water distribution models with data assimilation methods: A comparative study.
    Zhou X; Guo S; Xin K; Xu W; Tao T; Yan H
    Water Res; 2022 Nov; 226():119268. PubMed ID: 36302270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological attributes of network resilience: A study in water distribution systems.
    Meng F; Fu G; Farmani R; Sweetapple C; Butler D
    Water Res; 2018 Oct; 143():376-386. PubMed ID: 29986247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient multi-objective optimization method for water quality sensor placement within water distribution systems considering contamination probability variations.
    He G; Zhang T; Zheng F; Zhang Q
    Water Res; 2018 Oct; 143():165-175. PubMed ID: 29945032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the global resilience of water quality sensor placement strategies within water distribution systems.
    Zhang Q; Zheng F; Kapelan Z; Savic D; He G; Ma Y
    Water Res; 2020 Apr; 172():115527. PubMed ID: 32004913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Water Distribution System Hydraulic Modeling Using Prior Demand Information by Formal Bayesian Approach.
    Shao Y; Chu S; Zhang T; Yang YJ; Yu T
    J Water Resour Plan Manag; 2019; 145(12):. PubMed ID: 33623182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time foul sewer hydraulic modelling driven by water consumption data from water distribution systems.
    Zhang Q; Zheng F; Jia Y; Savic D; Kapelan Z
    Water Res; 2021 Jan; 188():116544. PubMed ID: 33126001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical approach for water distribution system model calibration through incorporation of multiple stochastic prior distributions.
    Chu S; Zhang T; Shao Y; Yu T; Yao H
    Sci Total Environ; 2020 Mar; 708():134565. PubMed ID: 31806332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online state estimation in water distribution systems via Extended Kalman Filtering.
    Bartos M; Thomas M; Kim MG; Frankel M; Sela L
    Water Res; 2024 Oct; 264():122201. PubMed ID: 39137483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FITSK: online local learning with generic fuzzy input Takagi-Sugeno-Kang fuzzy framework for nonlinear system estimation.
    Quah KH; Quek C
    IEEE Trans Syst Man Cybern B Cybern; 2006 Feb; 36(1):166-78. PubMed ID: 16468575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of truncated normal distribution for estimating hydraulic parameters in water distribution systems: taking nodal water demand as an example.
    Shao Y; Li K; Zhang T; Yang YJ; Chu S
    J Hydroinform; 2023 Sep; 25(5):2053-2068. PubMed ID: 38357631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using complex network analysis for water quality assessment in large water distribution systems.
    Sitzenfrei R
    Water Res; 2021 Aug; 201():117359. PubMed ID: 34171648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fuzzy multi-stakeholder multi-criteria methodology for water allocation and reuse in metropolitan areas.
    Pourmand E; Mahjouri N
    Environ Monit Assess; 2018 Jun; 190(7):444. PubMed ID: 29961116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic design of membership functions for fuzzy-logic control: A case study on one-stage partial nitritation/anammox treatment systems.
    Boiocchi R; Gernaey KV; Sin G
    Water Res; 2016 Oct; 102():346-361. PubMed ID: 27390035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A noise adaptive approach for nodal water demand estimation in water distribution systems.
    Chu S; Zhang T; Yu T; Wang QJ; Shao Y
    Water Res; 2021 Mar; 192():116837. PubMed ID: 33485266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-based approach for cyber-physical attack detection in water distribution systems.
    Housh M; Ohar Z
    Water Res; 2018 Aug; 139():132-143. PubMed ID: 29635150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular interdependency analysis for water distribution systems.
    Diao K; Jung D; Farmani R; Fu G; Butler D; Lansey K
    Water Res; 2021 Aug; 201():117320. PubMed ID: 34139513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Greedy Sampling Design Algorithm for the Modal Calibration of Nodal Demand in Water Distribution Systems.
    Shao Y; Chu S; Zhang T; Yang YJ; Yu T
    Environ Model Softw; 2019 Feb; 2019():1-3917571. PubMed ID: 32831618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Risk assessment of hybrid rain harvesting system and other small drinking water supply systems by game theory and fuzzy logic modeling.
    Liu B; Huang JJ; McBean E; Li Y
    Sci Total Environ; 2020 Mar; 708():134436. PubMed ID: 31780148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolving compact and interpretable Takagi-Sugeno fuzzy models with a new encoding scheme.
    Kim MS; Kim CH; Lee JJ
    IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1006-23. PubMed ID: 17036809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.