These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 37270975)
1. Understanding the impact of a non-ionic surfactant alkylphenol ethoxylate on surface-enhanced Raman spectroscopic analysis of pesticides on apple surfaces. Du X; Gao Z; Yang T; Qu Y; He L Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 301():122954. PubMed ID: 37270975 [TBL] [Abstract][Full Text] [Related]
2. Quantifying the effect of non-ionic surfactant alkylphenol ethoxylates on the persistence of thiabendazole on fresh produce surface. Du X; Gao Z; He L J Sci Food Agric; 2024 Mar; 104(5):2630-2640. PubMed ID: 37985216 [TBL] [Abstract][Full Text] [Related]
3. Effectiveness of Commercial and Homemade Washing Agents in Removing Pesticide Residues on and in Apples. Yang T; Doherty J; Zhao B; Kinchla AJ; Clark JM; He L J Agric Food Chem; 2017 Nov; 65(44):9744-9752. PubMed ID: 29067814 [TBL] [Abstract][Full Text] [Related]
4. Rapid detection of thiabendazole residues in apple juice by surface-enhanced Raman scattering coupled with silver coated gold nanoparticles. Song Y; Qiu H; Huang Y; Wang X; Lai K Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123189. PubMed ID: 37506455 [TBL] [Abstract][Full Text] [Related]
5. Facile synthesis of gold nanostars for the duplex detection of pesticide residues in grapes using SERS. Zhai K; Sun L; Nguyen THD; Lin M J Food Sci; 2024 Apr; 89(4):2512-2521. PubMed ID: 38380711 [TBL] [Abstract][Full Text] [Related]
6. Investigation of Pesticide Penetration and Persistence on Harvested and Live Basil Leaves Using Surface-Enhanced Raman Scattering Mapping. Yang T; Zhao B; Kinchla AJ; Clark JM; He L J Agric Food Chem; 2017 May; 65(17):3541-3550. PubMed ID: 28393527 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of gold nanorods for SERS detection of thiabendazole in apple. Fu G; Sun DW; Pu H; Wei Q Talanta; 2019 Apr; 195():841-849. PubMed ID: 30625626 [TBL] [Abstract][Full Text] [Related]
8. Recovery and quantitative detection of thiabendazole on apples using a surface swab capture method followed by surface-enhanced Raman spectroscopy. He L; Chen T; Labuza TP Food Chem; 2014 Apr; 148():42-6. PubMed ID: 24262524 [TBL] [Abstract][Full Text] [Related]
9. Determination of the Limit of Detection of Multiple Pesticides Utilizing Gold Nanoparticles and Surface-Enhanced Raman Spectroscopy. Dowgiallo AM; Guenther DA J Agric Food Chem; 2019 Nov; 67(46):12642-12651. PubMed ID: 31188587 [TBL] [Abstract][Full Text] [Related]
10. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Hu B; Sun DW; Pu H; Wei Q Talanta; 2020 Sep; 217():120998. PubMed ID: 32498854 [TBL] [Abstract][Full Text] [Related]
11. Real-Time Monitoring of Pesticide Translocation in Tomato Plants by Surface-Enhanced Raman Spectroscopy. Yang T; Doherty J; Guo H; Zhao B; Clark JM; Xing B; Hou R; He L Anal Chem; 2019 Feb; 91(3):2093-2099. PubMed ID: 30628431 [TBL] [Abstract][Full Text] [Related]
12. SERS-based pesticide detection by using nanofinger sensors. Kim A; Barcelo SJ; Li Z Nanotechnology; 2015 Jan; 26(1):015502. PubMed ID: 25490192 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of bimetallic core-shelled nanoparticles modified by 2-mercaptoethanol as SERS substrates for detecting ferbam and thiabendazole in apple puree. Hussain N; Pu H; Sun DW Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 Aug; 38(8):1386-1399. PubMed ID: 34157962 [TBL] [Abstract][Full Text] [Related]
14. Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables. Chen J; Huang M; Kong L; Lin M Carbohydr Polym; 2019 Feb; 205():596-600. PubMed ID: 30446146 [TBL] [Abstract][Full Text] [Related]
15. A spectroscopic approach to detect and quantify phosmet residues in Oolong tea by surface-enhanced Raman scattering and silver nanoparticle substrate. Chen X; Wang D; Li J; Xu T; Lai K; Ding Q; Lin H; Sun L; Lin M Food Chem; 2020 May; 312():126016. PubMed ID: 31896459 [TBL] [Abstract][Full Text] [Related]
16. Analysis and experimental assessment of an optimized SERS substrate used to detect thiabendazole in apples with high sensitivity. Li X; Zhang Y; Awais M; Zhang H; Naqvi SMZA; Li L; Xiong Y; Hu J Anal Bioanal Chem; 2024 Jan; 416(2):497-508. PubMed ID: 38001372 [TBL] [Abstract][Full Text] [Related]
17. EC-SERS detection of thiabendazole in apple juice using activated screen-printed electrodes. Moldovan R; Milenko K; Vereshchagina E; Iacob BC; Schneider K; Farcău C; Bodoki E Food Chem; 2023 Mar; 405(Pt A):134713. PubMed ID: 36335731 [TBL] [Abstract][Full Text] [Related]
18. Standing gold nanorod arrays as reproducible SERS substrates for measurement of pesticides in apple juice and vegetables. Zhang Z; Yu Q; Li H; Mustapha A; Lin M J Food Sci; 2015 Feb; 80(2):N450-8. PubMed ID: 25604440 [TBL] [Abstract][Full Text] [Related]
19. Rapid determination of thiabendazole in juice by SERS coupled with novel gold nanosubstrates. Alsammarraie FK; Lin M; Mustapha A; Lin H; Chen X; Chen Y; Wang H; Huang M Food Chem; 2018 Sep; 259():219-225. PubMed ID: 29680047 [TBL] [Abstract][Full Text] [Related]
20. Quantitative SERS sensor based on self-assembled Au@Ag heterogeneous nanocuboids monolayer with high enhancement factor for practical quantitative detection. Li J; Wang Q; Wang J; Li M; Zhang X; Luan L; Li P; Xu W Anal Bioanal Chem; 2021 Jul; 413(16):4207-4215. PubMed ID: 33987702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]