These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37271453)

  • 41. Intraclonal protein expression heterogeneity in recombinant CHO cells.
    Pilbrough W; Munro TP; Gray P
    PLoS One; 2009 Dec; 4(12):e8432. PubMed ID: 20037651
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dimerization through the RING-Finger Domain Attenuates Excision Activity of the piggyBac Transposase.
    Sharma R; Nirwal S; Narayanan N; Nair DT
    Biochemistry; 2018 May; 57(20):2913-2922. PubMed ID: 29750515
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monoclonal antibodies expression improvement in CHO cells by PiggyBac transposition regarding vectors ratios and design.
    Ahmadi S; Davami F; Davoudi N; Nematpour F; Ahmadi M; Ebadat S; Azadmanesh K; Barkhordari F; Mahboudi F
    PLoS One; 2017; 12(6):e0179902. PubMed ID: 28662065
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient site-specific integration in CHO-K1 cells using CRISPR/Cas9-modified donors.
    Kheirandish MH; Rahmani B; Zarei Jaliani H; Barkhordari F; Mazlomi MA; Davami F
    Mol Biol Rep; 2023 Jul; 50(7):5889-5899. PubMed ID: 37244887
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A high-fidelity, dual site-specific integration system in CHO cells by a Bxb1 recombinase.
    Xu Y; Crowe KB; Lieske PL; Barnes M; Bandara K; Chu J; Wei W; Scarcelli JJ; Zhang L
    Biotechnol J; 2024 Jan; 19(2):e2300410. PubMed ID: 38375559
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment.
    Rajendra Y; Hougland MD; Alam R; Morehead TA; Barnard GC
    Biotechnol Bioeng; 2015 May; 112(5):977-86. PubMed ID: 25502369
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Himar1 mariner transposase cloned in a recombinant adenovirus vector is functional in mammalian cells.
    Zhang L; Sankar U; Lampe DJ; Robertson HM; Graham FL
    Nucleic Acids Res; 1998 Aug; 26(16):3687-93. PubMed ID: 9685483
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chimeric Mos1 and piggyBac transposases result in site-directed integration.
    Maragathavally KJ; Kaminski JM; Coates CJ
    FASEB J; 2006 Sep; 20(11):1880-2. PubMed ID: 16877528
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Duration of expression and activity of Sleeping Beauty transposase in mouse liver following hydrodynamic DNA delivery.
    Bell JB; Aronovich EL; Schreifels JM; Beadnell TC; Hackett PB
    Mol Ther; 2010 Oct; 18(10):1796-802. PubMed ID: 20628359
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Targeted DNA transposition in vitro using a dCas9-transposase fusion protein.
    Bhatt S; Chalmers R
    Nucleic Acids Res; 2019 Sep; 47(15):8126-8135. PubMed ID: 31429873
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrasound directs a transposase system for durable hepatic gene delivery in mice.
    Anderson CD; Urschitz J; Khemmani M; Owens JB; Moisyadi S; Shohet RV; Walton CB
    Ultrasound Med Biol; 2013 Dec; 39(12):2351-61. PubMed ID: 24035623
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An Efficient In Vitro Transposition Method by a Transcriptionally Regulated Sleeping Beauty System Packaged into an Integration Defective Lentiviral Vector.
    Benati D; Cocchiarella F; Recchia A
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364270
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Messenger RNA as a source of transposase for sleeping beauty transposon-mediated correction of hereditary tyrosinemia type I.
    Wilber A; Wangensteen KJ; Chen Y; Zhuo L; Frandsen JL; Bell JB; Chen ZJ; Ekker SC; McIvor RS; Wang X
    Mol Ther; 2007 Jul; 15(7):1280-7. PubMed ID: 17440442
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sleeping beauty transposon-mediated gene therapy for prolonged expression.
    Hackett PB; Ekker SC; Largaespada DA; McIvor RS
    Adv Genet; 2005; 54():189-232. PubMed ID: 16096013
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Strategic deployment of CHO expression platforms to deliver Pfizer's Monoclonal Antibody Portfolio.
    Scarcelli JJ; Shang TQ; Iskra T; Allen MJ; Zhang L
    Biotechnol Prog; 2017 Nov; 33(6):1463-1467. PubMed ID: 28480558
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In Vitro Synthesis, Delivery, and Bioavailability of Exogenous mRNA in Gene Transfer Mediated by PiggyBac Transposition.
    Bire S; Ishac N; Rouleux-Bonnin F
    Methods Mol Biol; 2016; 1428():187-217. PubMed ID: 27236801
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An efficient Screening System in Yeast to Select a Hyperactive
    Wen W; Song S; Han Y; Chen H; Liu X; Qian Q
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32357554
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stable gene transfer to human CD34(+) hematopoietic cells using the Sleeping Beauty transposon.
    Hollis RP; Nightingale SJ; Wang X; Pepper KA; Yu XJ; Barsky L; Crooks GM; Kohn DB
    Exp Hematol; 2006 Oct; 34(10):1333-43. PubMed ID: 16982326
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure of hermes integrations in the germline of the yellow fever mosquito, Aedes aegypti.
    Jasinskiene N; Coates CJ; James AA
    Insect Mol Biol; 2000 Feb; 9(1):11-8. PubMed ID: 10672066
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Maximizing antibody production in a targeted integration host by optimization of subunit gene dosage and position.
    Carver J; Ng D; Zhou M; Ko P; Zhan D; Yim M; Shaw D; Snedecor B; Laird MW; Lang S; Shen A; Hu Z
    Biotechnol Prog; 2020 Jul; 36(4):e2967. PubMed ID: 31965756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.