BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37271832)

  • 1. No detectable upper limit of mineral-associated organic carbon in temperate agricultural soils.
    Begill N; Don A; Poeplau C
    Glob Chang Biol; 2023 Aug; 29(16):4662-4669. PubMed ID: 37271832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High organic carbon content constricts the potential for stable organic carbon accrual in mineral agricultural soils in Finland.
    Soinne H; Hyyrynen M; Jokubė M; Keskinen R; Hyväluoma J; Pihlainen S; Hyytiäinen K; Miettinen A; Rasa K; Lemola R; Virtanen E; Heinonsalo J; Heikkinen J
    J Environ Manage; 2024 Feb; 352():119945. PubMed ID: 38215596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.
    Wiesmeier M; Hübner R; Spörlein P; Geuß U; Hangen E; Reischl A; Schilling B; von Lützow M; Kögel-Knabner I
    Glob Chang Biol; 2014 Feb; 20(2):653-65. PubMed ID: 24038905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.
    Wiesmeier M; Munro S; Barthold F; Steffens M; Schad P; Kögel-Knabner I
    Glob Chang Biol; 2015 Oct; 21(10):3836-45. PubMed ID: 25916410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.
    Cai A; Feng W; Zhang W; Xu M
    J Environ Manage; 2016 May; 172():2-9. PubMed ID: 26905446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How much organic carbon could the soil store? The carbon sequestration potential of Australian soil.
    Viscarra Rossel RA; Webster R; Zhang M; Shen Z; Dixon K; Wang YP; Walden L
    Glob Chang Biol; 2024 Jan; 30(1):e17053. PubMed ID: 38273544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of soil mineral-associated and particulate organic carbon to carbon input: A meta-analysis.
    Zhang F; Chen X; Yao S; Ye Y; Zhang B
    Sci Total Environ; 2022 Jul; 829():154626. PubMed ID: 35306064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global pattern of organic carbon pools in forest soils.
    Zhang Y; Guo X; Chen L; Kuzyakov Y; Wang R; Zhang H; Han X; Jiang Y; Sun OJ
    Glob Chang Biol; 2024 Jun; 30(6):e17386. PubMed ID: 38899550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Responses of Soil Organic Carbon Fractions to Land Use Types in Hilly Red Soil Regions, China].
    Zhang XF; Zheng SM; Xia YH; Hu YJ; Su YR; Chen XB
    Huan Jing Ke Xue; 2020 Mar; 41(3):1466-1473. PubMed ID: 32608650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergent contribution of particulate and mineral-associated organic matter to soil carbon in grassland.
    Liao J; Yang X; Dou Y; Wang B; Xue Z; Sun H; Yang Y; An S
    J Environ Manage; 2023 Oct; 344():118536. PubMed ID: 37392693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis.
    Rocci KS; Lavallee JM; Stewart CE; Cotrufo MF
    Sci Total Environ; 2021 Nov; 793():148569. PubMed ID: 34328984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes of soil nutrients and organic carbon fractions in
    Zhang YH; Li Y; Zhou Y; Chen YJ; An SS
    Ying Yong Sheng Tai Xue Bao; 2024 Mar; 35(3):639-647. PubMed ID: 38646751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand.
    McNally SR; Beare MH; Curtin D; Meenken ED; Kelliher FM; Calvelo Pereira R; Shen Q; Baldock J
    Glob Chang Biol; 2017 Nov; 23(11):4544-4555. PubMed ID: 28397333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct, direct and climate-mediated environmental controls on global particulate and mineral-associated organic carbon storage.
    Hansen PM; Even R; King AE; Lavallee J; Schipanski M; Cotrufo MF
    Glob Chang Biol; 2024 Jan; 30(1):e17080. PubMed ID: 38273571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon sequestration in paddy soils: Contribution and mechanisms of mineral-associated SOC formation.
    Niu C; Weng L; Lian W; Zhang R; Ma J; Chen Y
    Chemosphere; 2023 Aug; 333():138927. PubMed ID: 37187382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: a meta-analysis.
    Matus FJ
    Sci Rep; 2021 Mar; 11(1):6438. PubMed ID: 33742022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential to increase grassland soil C stocks by extending reseeding intervals is dependent on soil texture and depth.
    Elias DMO; Mason KE; Howell K; Mitschunas N; Hulmes L; Hulmes S; Lebron I; Pywell RF; McNamara NP
    J Environ Manage; 2023 May; 334():117465. PubMed ID: 36780812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of experimental nitrogen deposition on soil organic carbon storage in Southern California drylands.
    Püspök JF; Zhao S; Calma AD; Vourlitis GL; Allison SD; Aronson EL; Schimel JP; Hanan EJ; Homyak PM
    Glob Chang Biol; 2023 Mar; 29(6):1660-1679. PubMed ID: 36527334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change stress alleviation through nature based solutions: A global perspective.
    Adil M; Yao Z; Zhang C; Lu S; Fu S; Mosa WFA; Hasan ME; Lu H
    Front Plant Sci; 2022; 13():1007222. PubMed ID: 36212308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Important constraints on soil organic carbon formation efficiency in subtropical and tropical grasslands.
    Mitchell E; Scheer C; Rowlings D; Cotrufo F; Conant RT; Grace P
    Glob Chang Biol; 2021 Oct; 27(20):5383-5391. PubMed ID: 34288295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.