These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37271992)

  • 1. A near-complete genome assembly of the allotetrapolyploid Cenchrus fungigraminus (JUJUNCAO) provides insights into its evolution and C4 photosynthesis.
    Zheng H; Wang B; Hua X; Gao R; Wang Y; Zhang Z; Zhang Y; Mei J; Huang Y; Huang Y; Lin H; Zhang X; Lin D; Lan S; Liu Z; Lu G; Wang Z; Ming R; Zhang J; Lin Z
    Plant Commun; 2023 Sep; 4(5):100633. PubMed ID: 37271992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The elephant grass (Cenchrus purpureus) genome provides insights into anthocyanidin accumulation and fast growth.
    Yan Q; Wu F; Xu P; Sun Z; Li J; Gao L; Lu L; Chen D; Muktar M; Jones C; Yi X; Zhang J
    Mol Ecol Resour; 2021 Feb; 21(2):526-542. PubMed ID: 33040437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the NAD-ME biochemical pathway within C
    Watson-Lazowski A; Papanicolaou A; Sharwood R; Ghannoum O
    Photosynth Res; 2018 Nov; 138(2):233-248. PubMed ID: 30078073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shade compromises the photosynthetic efficiency of NADP-ME less than that of PEP-CK and NAD-ME C4 grasses.
    Sonawane BV; Sharwood RE; Whitney S; Ghannoum O
    J Exp Bot; 2018 May; 69(12):3053-3068. PubMed ID: 29659931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coleataenia prionitis, a C
    Tashima M; Yabiku T; Ueno O
    Photosynth Res; 2021 Feb; 147(2):211-227. PubMed ID: 33393063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosome-scale genome assembly provides insights into speciation of allotetraploid and massive biomass accumulation of elephant grass (Pennisetum purpureum Schum.).
    Zhang S; Xia Z; Li C; Wang X; Lu X; Zhang W; Ma H; Zhou X; Zhang W; Zhu T; Liu P; Liu G; Wang W; Xia T
    Mol Ecol Resour; 2022 Aug; 22(6):2363-2378. PubMed ID: 35347881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo transcriptome assemblies of C
    Prochetto S; Studer AJ; Reinheimer R
    BMC Genomics; 2023 Feb; 24(1):64. PubMed ID: 36747121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential subgenome expression underlies biomass accumulation in allotetraploid Pennisetum giganteum.
    Xing L; Wang M; He Q; Zhang H; Liang H; Zhou Q; Liu Y; Liu Z; Wang Y; Du C; Xiao Y; Liu J; Li W; Liu G; Du H
    BMC Biol; 2023 Jul; 21(1):161. PubMed ID: 37480118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assessment of the capacity for phosphoenolpyruvate carboxykinase to contribute to C4 photosynthesis.
    Koteyeva NK; Voznesenskaya EV; Edwards GE
    Plant Sci; 2015 Jun; 235():70-80. PubMed ID: 25900567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transcriptomic responses of C
    Watson-Lazowski A; Papanicolaou A; Koller F; Ghannoum O
    Plant J; 2020 Mar; 101(5):1170-1184. PubMed ID: 31651067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt stress induces Kranz anatomy and expression of C
    Takao K; Shirakura H; Hatakeyama Y; Ueno O
    Photosynth Res; 2022 Aug; 153(1-2):93-102. PubMed ID: 35352232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The activities of PEP carboxylase and the C4 acid decarboxylases are little changed by drought stress in three C4 grasses of different subtypes.
    Carmo-Silva AE; Bernardes da Silva A; Keys AJ; Parry MA; Arrabaça MC
    Photosynth Res; 2008 Sep; 97(3):223-33. PubMed ID: 18629606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of leaf structure and photosynthetic characteristics of C3 and C4 Alloteropsis semialata subspecies.
    Ueno O; Sentoku N
    Plant Cell Environ; 2006 Feb; 29(2):257-68. PubMed ID: 17080641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of leaf anatomy and photosynthetic pathways in Portulacaceae.
    Ocampo G; Koteyeva NK; Voznesenskaya EV; Edwards GE; Sage TL; Sage RF; Columbus JT
    Am J Bot; 2013 Dec; 100(12):2388-402. PubMed ID: 24259525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C4 Photosynthesis evolved in grasses via parallel adaptive genetic changes.
    Christin PA; Salamin N; Savolainen V; Duvall MR; Besnard G
    Curr Biol; 2007 Jul; 17(14):1241-7. PubMed ID: 17614282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus deficiency inhibits growth in parallel with photosynthesis in a C
    Ghannoum O; Conroy JP
    Funct Plant Biol; 2007 Feb; 34(1):72-81. PubMed ID: 32689333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic variation in grass phosphoenolpyruvate carboxylases provides opportunity to enhance C
    DiMario RJ; Kophs AN; Pathare VS; Schnable JC; Cousins AB
    Plant J; 2021 Mar; 105(6):1677-1688. PubMed ID: 33345397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and enzyme expression in photosynthetic organs of the atypical C4 grass Arundinella hirta.
    Wakayama M; Ohnishi J; Ueno O
    Planta; 2006 May; 223(6):1243-55. PubMed ID: 16450173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deconstructing Kranz anatomy to understand C4 evolution.
    Lundgren MR; Osborne CP; Christin PA
    J Exp Bot; 2014 Jul; 65(13):3357-69. PubMed ID: 24799561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of thylakoid protein complexes in the mesophyll and bundle sheath cells from C
    Hernández-Prieto MA; Foster C; Watson-Lazowski A; Ghannoum O; Chen M
    Physiol Plant; 2019 May; 166(1):134-147. PubMed ID: 30838662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.