BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37272215)

  • 1. The accuracy of commercially available instrumented insoles (ARION) for measuring spatiotemporal running metrics.
    Van Hooren B; Willems P; Plasqui G; Meijer K
    Scand J Med Sci Sports; 2023 Sep; 33(9):1703-1715. PubMed ID: 37272215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Musculoskeletal Loading at Common Running Injury Locations using Machine Learning and Instrumented Insoles.
    Van Hooren B; van Rengs L; Meijer K
    Med Sci Sports Exerc; 2024 Jun; ():. PubMed ID: 38857523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in running economy and running technique following 6 months of running with and without wearable-based real-time feedback.
    Van Hooren B; Willems P; Plasqui G; Meijer K
    Scand J Med Sci Sports; 2024 Jan; 34(1):e14565. PubMed ID: 38268070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Wearable-Based Real-Time Feedback on Running Injuries and Running Performance: A Randomized Controlled Trial.
    Van Hooren B; Plasqui G; Meijer K
    Am J Sports Med; 2024 Mar; 52(3):750-765. PubMed ID: 38287728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running.
    Matijevich ES; Scott LR; Volgyesi P; Derry KH; Zelik KE
    Hum Mov Sci; 2020 Dec; 74():102690. PubMed ID: 33132194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical effects following footstrike pattern modification using wearable sensors.
    Chan PPK; Chan ZYS; Au IPH; Lam BMF; Lam WK; Cheung RTH
    J Sci Med Sport; 2021 Jan; 24(1):30-35. PubMed ID: 32553447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliability and validity of the Zebris FDM-THQ instrumented treadmill during running trials.
    Van Alsenoy K; Thomson A; Burnett A
    Sports Biomech; 2019 Oct; 18(5):501-514. PubMed ID: 29785869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agreement Between the OptoGait and Instrumented Treadmill System for the Quantification of Spatiotemporal Treadmill Running Parameters.
    Weart AN; Miller EM; Freisinger GM; Johnson MR; Goss DL
    Front Sports Act Living; 2020; 2():571385. PubMed ID: 33345131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy and precision of loadsol
    Seiberl W; Jensen E; Merker J; Leitel M; Schwirtz A
    Eur J Sport Sci; 2018 Sep; 18(8):1100-1109. PubMed ID: 29842825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does maximalist footwear lower impact loading during level ground and downhill running?
    Chan ZYS; Au IPH; Lau FOY; Ching ECK; Zhang JH; Cheung RTH
    Eur J Sport Sci; 2018 Sep; 18(8):1083-1089. PubMed ID: 29792108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability and Validity of Running Cadence and Stance Time Derived from Instrumented Wireless Earbuds.
    Nijs A; Beek PJ; Roerdink M
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Reduced-Gravity Treadmill Running on Sensor-Derived Biomechanics.
    Santos BP; DeJong Lempke AF; Higgins MJ; Hertel J
    Sports Health; 2023; 15(5):645-652. PubMed ID: 36625219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeatability of spatiotemporal, plantar pressure and force parameters during treadmill walking and running.
    Nüesch C; Overberg JA; Schwameder H; Pagenstert G; Mündermann A
    Gait Posture; 2018 May; 62():117-123. PubMed ID: 29547791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a wireless shoe insole for ground reaction force measurement.
    Burns GT; Deneweth Zendler J; Zernicke RF
    J Sports Sci; 2019 May; 37(10):1129-1138. PubMed ID: 30427263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill.
    Donath L; Faude O; Lichtenstein E; Nüesch C; Mündermann A
    J Neuroeng Rehabil; 2016 Jan; 13():6. PubMed ID: 26790409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate Ambulatory Gait Analysis in Walking and Running Using Machine Learning Models.
    Zhang H; Guo Y; Zanotto D
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):191-202. PubMed ID: 31831428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Case Study Comparing Running Metrics Determined from Unshod and Various Shod Running Events.
    Petroff N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3175-3178. PubMed ID: 31946562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sacral acceleration can predict whole-body kinetics and stride kinematics across running speeds.
    Alcantara RS; Day EM; Hahn ME; Grabowski AM
    PeerJ; 2021; 9():e11199. PubMed ID: 33954039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validity Analysis of WalkerView
    Bravi M; Massaroni C; Santacaterina F; Di Tocco J; Schena E; Sterzi S; Bressi F; Miccinilli S
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tibial bone forces can be monitored using shoe-worn wearable sensors during running.
    Elstub LJ; Nurse CA; Grohowski LM; Volgyesi P; Wolf DN; Zelik KE
    J Sports Sci; 2022 Aug; 40(15):1741-1749. PubMed ID: 35938189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.