These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37272279)

  • 1. Denoising Tc-99m DMSA images using Denoising Convolutional Neural Network with comparison to a Block Matching Filter.
    Chaudhary J; Phulia A; Pandey AK; Sharma PD; Patel C
    Nucl Med Commun; 2023 Aug; 44(8):682-690. PubMed ID: 37272279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A convolutional neural network for ultra-low-dose CT denoising and emphysema screening.
    Zhao T; McNitt-Gray M; Ruan D
    Med Phys; 2019 Sep; 46(9):3941-3950. PubMed ID: 31220358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introducing Swish and Parallelized Blind Removal Improves the Performance of a Convolutional Neural Network in Denoising MR Images.
    Sugai T; Takano K; Ouchi S; Ito S
    Magn Reson Med Sci; 2021 Dec; 20(4):410-424. PubMed ID: 33583867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 99m-Tc MDP Bone Scan Image Enhancement using Pipeline Application of Dynamic Stochastic Resonance Algorithm and Block-Matching 3D Filter.
    Pandey AK; Kaur G; Chaudhary J; Hemrom A; Jaleel J; Sharma PD; Patel C; Kumar R
    Indian J Nucl Med; 2023; 38(1):8-15. PubMed ID: 37180179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics.
    Zhao T; Hoffman J; McNitt-Gray M; Ruan D
    Med Phys; 2019 Jan; 46(1):190-198. PubMed ID: 30351450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acquisition time reduction in pediatric
    Ichikawa S; Sugimori H; Ichijiri K; Yoshimura T; Nagaki A
    J Appl Clin Med Phys; 2023 Jun; 24(6):e13978. PubMed ID: 37021382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-lossless Compression of Tc-99 m DMSA Scan Images Using Discrete Cosine Transformation.
    Yadav P; Pandey AK; Chaudhary J; Sharma PD; Jaleel J; Baghel V; Patel C; Kumar R
    Indian J Nucl Med; 2023; 38(3):231-238. PubMed ID: 38046967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative evaluation of deep convolutional neural network-based image denoising for low-dose computed tomography.
    Usui K; Ogawa K; Goto M; Sakano Y; Kyougoku S; Daida H
    Vis Comput Ind Biomed Art; 2021 Jul; 4(1):21. PubMed ID: 34304321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating Prostate Diffusion-weighted MRI Using a Guided Denoising Convolutional Neural Network: Retrospective Feasibility Study.
    Kaye EA; Aherne EA; Duzgol C; Häggström I; Kobler E; Mazaheri Y; Fung MM; Zhang Z; Otazo R; Vargas HA; Akin O
    Radiol Artif Intell; 2020 Aug; 2(5):e200007. PubMed ID: 33033804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Second-Order Method for Removing Mixed Noise from Remote Sensing Images.
    Zhou Y; Ren C; Zhang S; Xue X; Liu Y; Lu J; Ding C
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dilated Residual Learning With Skip Connections for Real-Time Denoising of Laser Speckle Imaging of Blood Flow in a Log-Transformed Domain.
    Cheng W; Lu J; Zhu X; Hong J; Liu X; Li M; Li P
    IEEE Trans Med Imaging; 2020 May; 39(5):1582-1593. PubMed ID: 31725373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved cortical surface reconstruction using sub-millimeter resolution MPRAGE by image denoising.
    Tian Q; Zaretskaya N; Fan Q; Ngamsombat C; Bilgic B; Polimeni JR; Huang SY
    Neuroimage; 2021 Jun; 233():117946. PubMed ID: 33711484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning Based Noise Reduction for Brain MR Imaging: Tests on Phantoms and Healthy Volunteers.
    Kidoh M; Shinoda K; Kitajima M; Isogawa K; Nambu M; Uetani H; Morita K; Nakaura T; Tateishi M; Yamashita Y; Yamashita Y
    Magn Reson Med Sci; 2020 Aug; 19(3):195-206. PubMed ID: 31484849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing input parameter of the randomized singular value decomposition algorithm for compressing technetium-99m L,L, ethylenedicysteine renal dynamic study in minimum time preserving clinical information.
    Chaudhary J; Pandey AK; Sharma PD; Patel C; Kumar R
    Nucl Med Commun; 2022 Dec; 43(12):1171-1180. PubMed ID: 36345761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of noise estimation methods used in denoising
    Pandey AK; Sharma PD; Sharma A; Bal CS; Kumar R
    World J Nucl Med; 2021; 20(1):46-53. PubMed ID: 33850489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-field mr diffusion-weighted image denoising using a joint denoising convolutional neural network.
    Wang H; Zheng R; Dai F; Wang Q; Wang C
    J Magn Reson Imaging; 2019 Dec; 50(6):1937-1947. PubMed ID: 31012226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images.
    Zhao M; Wei Y; Wong KKL
    Magn Reson Imaging; 2022 Jan; 85():153-160. PubMed ID: 34699953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of the smoothing filter in pediatric
    Saito H; Ito T; Omachi K; Inugami A; Yamaguchi M; Tsushima M; Mariya Y; Kashiwakura I
    Radiol Phys Technol; 2020 Mar; 13(1):104-110. PubMed ID: 31993983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing the risk of hallucinations with interpretable deep learning models for low-dose CT denoising: comparative performance analysis.
    Patwari M; Gutjahr R; Marcus R; Thali Y; Calvarons AF; Raupach R; Maier A
    Phys Med Biol; 2023 Oct; 68(19):. PubMed ID: 37733068
    [No Abstract]   [Full Text] [Related]  

  • 20. Denoising Multiphase Functional Cardiac CT Angiography Using Deep Learning and Synthetic Data.
    Sandfort V; Willemink MJ; Codari M; Mastrodicasa D; Fleischmann D
    Radiol Artif Intell; 2024 Mar; 6(2):e230153. PubMed ID: 38416035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.