These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 37272298)
1. Inverse metabolic engineering for improving protein content in Saccharomyces cerevisiae. Lee YO; Do SH; Won JY; Chin YW; Chewaka LS; Park BR; Kim SJ; Kim SK Biotechnol J; 2023 Sep; 18(9):e2300014. PubMed ID: 37272298 [TBL] [Abstract][Full Text] [Related]
2. Enhancing Protein Content in Wild-Type Do SH; Lee TG; Kim SK J Microbiol Biotechnol; 2024 Sep; 34(9):1912-1918. PubMed ID: 39187453 [TBL] [Abstract][Full Text] [Related]
3. Metabolic Engineering of Saccharomyces cerevisiae for Fermentative Production of Heme. Lee HJ; Shin DJ; Nho SB; Lee KW; Kim SK Biotechnol J; 2024 Oct; 19(10):e202400351. PubMed ID: 39380497 [TBL] [Abstract][Full Text] [Related]
4. Systematic Metabolic Engineering of Shi B; Ma T; Ye Z; Li X; Huang Y; Zhou Z; Ding Y; Deng Z; Liu T J Agric Food Chem; 2019 Oct; 67(40):11148-11157. PubMed ID: 31532654 [TBL] [Abstract][Full Text] [Related]
5. Performance of the auxotrophic Saccharomyces cerevisiae BY4741 as host for the production of IL-1beta in aerated fed-batch reactor: role of ACA supplementation, strain viability, and maintenance energy. Paciello L; de Alteriis E; Mazzoni C; Palermo V; Zueco J; Parascandola P Microb Cell Fact; 2009 Dec; 8():70. PubMed ID: 20042083 [TBL] [Abstract][Full Text] [Related]
6. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae. Jo JH; Oh SY; Lee HS; Park YC; Seo JH Biotechnol J; 2015 Dec; 10(12):1935-43. PubMed ID: 26470683 [TBL] [Abstract][Full Text] [Related]
7. Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions. Kim SK; Jo JH; Park YC; Jin YS; Seo JH Enzyme Microb Technol; 2017 Jun; 101():30-35. PubMed ID: 28433188 [TBL] [Abstract][Full Text] [Related]
8. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering. Chen Y; Stabryla L; Wei N Appl Environ Microbiol; 2016 Jan; 82(7):2156-2166. PubMed ID: 26826231 [TBL] [Abstract][Full Text] [Related]
9. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Ma T; Shi B; Ye Z; Li X; Liu M; Chen Y; Xia J; Nielsen J; Deng Z; Liu T Metab Eng; 2019 Mar; 52():134-142. PubMed ID: 30471360 [TBL] [Abstract][Full Text] [Related]
10. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations. Seong YJ; Park H; Yang J; Kim SJ; Choi W; Kim KH; Park YC Appl Microbiol Biotechnol; 2017 May; 101(9):3567-3575. PubMed ID: 28168313 [TBL] [Abstract][Full Text] [Related]
11. Metabolic Engineering of Guo J; Sun X; Yuan Y; Chen Q; Ou Z; Deng Z; Ma T; Liu T J Agric Food Chem; 2023 May; 71(19):7408-7417. PubMed ID: 37154424 [TBL] [Abstract][Full Text] [Related]
12. Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae. Wei LJ; Kwak S; Liu JJ; Lane S; Hua Q; Kweon DH; Jin YS Biotechnol Bioeng; 2018 Jul; 115(7):1793-1800. PubMed ID: 29573412 [TBL] [Abstract][Full Text] [Related]
13. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
14. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509 [TBL] [Abstract][Full Text] [Related]
15. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae. Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006 [TBL] [Abstract][Full Text] [Related]
16. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Chen Y; Xiao W; Wang Y; Liu H; Li X; Yuan Y Microb Cell Fact; 2016 Jun; 15(1):113. PubMed ID: 27329233 [TBL] [Abstract][Full Text] [Related]
17. Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae. Zhao Y; Zuo F; Shu Q; Yang X; Deng Y Appl Environ Microbiol; 2023 Jun; 89(6):e0053523. PubMed ID: 37212714 [TBL] [Abstract][Full Text] [Related]
18. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Lian J; Chao R; Zhao H Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332 [TBL] [Abstract][Full Text] [Related]
20. Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae. Wang Z; Jiang M; Guo X; Liu Z; He X Microb Cell Fact; 2018 Apr; 17(1):60. PubMed ID: 29642888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]