These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Self-controlled in silico gene knockdown strategies to enhance the sustainable production of heterologous terpenoid by Saccharomyces cerevisiae. Zhang N; Li X; Zhou Q; Zhang Y; Lv B; Hu B; Li C Metab Eng; 2024 May; 83():172-182. PubMed ID: 38648878 [TBL] [Abstract][Full Text] [Related]
23. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. Kim SJ; Seo SO; Park YC; Jin YS; Seo JH J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571 [TBL] [Abstract][Full Text] [Related]
24. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production. Xu G; Hua Q; Duan N; Liu L; Chen J Yeast; 2012 Jun; 29(6):209-17. PubMed ID: 22674684 [TBL] [Abstract][Full Text] [Related]
25. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V; Brunner B; Müller G; Nidetzky B Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989 [TBL] [Abstract][Full Text] [Related]
26. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis. Jetti KD; Gns RR; Garlapati D; Nammi SK Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988 [TBL] [Abstract][Full Text] [Related]
27. Isobutanol tolerance and production of Saccharomyces cerevisiae can be improved by engineering its TATA-binding protein Spt15. Zhang W; Shao W; Zhang A Lett Appl Microbiol; 2021 Dec; 73(6):694-707. PubMed ID: 34418130 [TBL] [Abstract][Full Text] [Related]
28. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Kim SR; Ha SJ; Kong II; Jin YS Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925 [TBL] [Abstract][Full Text] [Related]
29. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746 [No Abstract] [Full Text] [Related]
30. Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae. Liu T; Sun L; Zhang C; Liu Y; Li J; Du G; Lv X; Liu L Bioresour Technol; 2023 Jul; 379():129023. PubMed ID: 37028528 [TBL] [Abstract][Full Text] [Related]
31. Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor. Yamada R; Nishikawa R; Wakita K; Ogino H J Ind Microbiol Biotechnol; 2018 May; 45(5):305-311. PubMed ID: 29605870 [TBL] [Abstract][Full Text] [Related]
32. Metabolic engineering of the L-serine biosynthetic pathway improves glutathione production in Saccharomyces cerevisiae. Kobayashi J; Sasaki D; Hara KY; Hasunuma T; Kondo A Microb Cell Fact; 2022 Aug; 21(1):153. PubMed ID: 35933377 [TBL] [Abstract][Full Text] [Related]
33. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Kim B; Cho BR; Hahn JS Biotechnol Bioeng; 2014 Jan; 111(1):115-24. PubMed ID: 23836015 [TBL] [Abstract][Full Text] [Related]
34. Biosensor-Enabled Directed Evolution to Improve Muconic Acid Production in Saccharomyces cerevisiae. Leavitt JM; Wagner JM; Tu CC; Tong A; Liu Y; Alper HS Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28296355 [TBL] [Abstract][Full Text] [Related]
35. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering. Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533 [TBL] [Abstract][Full Text] [Related]
36. Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae. Oh EJ; Wei N; Kwak S; Kim H; Jin YS J Biotechnol; 2019 Feb; 292():1-4. PubMed ID: 30615911 [TBL] [Abstract][Full Text] [Related]
37. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae. Quarterman J; Skerker JM; Feng X; Liu IY; Zhao H; Arkin AP; Jin YS J Biotechnol; 2016 Jul; 229():13-21. PubMed ID: 27140870 [TBL] [Abstract][Full Text] [Related]
38. Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose. Choi EJ; Kim JW; Kim SJ; Seo SO; Lane S; Park YC; Jin YS; Seo JH Biotechnol J; 2016 Nov; 11(11):1424-1432. PubMed ID: 27528190 [TBL] [Abstract][Full Text] [Related]
39. Engineering Saccharomyces cerevisiae for the production and secretion of Affibody molecules. Gast V; Sandegren A; Dunås F; Ekblad S; Güler R; Thorén S; Tous Mohedano M; Molin M; Engqvist MKM; Siewers V Microb Cell Fact; 2022 Mar; 21(1):36. PubMed ID: 35264156 [TBL] [Abstract][Full Text] [Related]
40. Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose. Shen L; Nishimura Y; Matsuda F; Ishii J; Kondo A J Biosci Bioeng; 2016 Jul; 122(1):34-9. PubMed ID: 26975754 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]