These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37272298)

  • 41. Heterologous production of levopimaric acid in Saccharomyces cerevisiae.
    Liu T; Zhang C; Lu W
    Microb Cell Fact; 2018 Jul; 17(1):114. PubMed ID: 30021574
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recombinant Production of an Inulinase in a Saccharomyces cerevisiae gal80 Strain.
    Lim SH; Lee H; Sok DE; Choi ES
    J Microbiol Biotechnol; 2010 Nov; 20(11):1529-33. PubMed ID: 21124058
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering.
    Xu G; Zou W; Chen X; Xu N; Liu L; Chen J
    PLoS One; 2012; 7(12):e52086. PubMed ID: 23300594
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae.
    Kim SR; Skerker JM; Kang W; Lesmana A; Wei N; Arkin AP; Jin YS
    PLoS One; 2013; 8(2):e57048. PubMed ID: 23468911
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolic engineering of the 2-ketobutyrate biosynthetic pathway for 1-propanol production in Saccharomyces cerevisiae.
    Nishimura Y; Matsui T; Ishii J; Kondo A
    Microb Cell Fact; 2018 Mar; 17(1):38. PubMed ID: 29523149
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineering precursor supply for the high-level production of ergothioneine in Saccharomyces cerevisiae.
    van der Hoek SA; Rusnák M; Wang G; Stanchev LD; de Fátima Alves L; Jessop-Fabre MM; Paramasivan K; Jacobsen IH; Sonnenschein N; Martínez JL; Darbani B; Kell DB; Borodina I
    Metab Eng; 2022 Mar; 70():129-142. PubMed ID: 35085780
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The multiple effects of REG1 deletion and SNF1 overexpression improved the production of S-adenosyl-L-methionine in Saccharomyces cerevisiae.
    Chen H; Chai X; Wang Y; Liu J; Zhou G; Wei P; Song Y; Ma L
    Microb Cell Fact; 2022 Aug; 21(1):174. PubMed ID: 36030199
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Orthogonal Engineering of Biosynthetic Pathway for Efficient Production of Limonene in Saccharomyces cerevisiae.
    Cheng S; Liu X; Jiang G; Wu J; Zhang JL; Lei D; Yuan YJ; Qiao J; Zhao GR
    ACS Synth Biol; 2019 May; 8(5):968-975. PubMed ID: 31063692
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Induction of point and structural mutations in engineered yeast Saccharomyces cerevisiae improve carotenoid production.
    Yamada R; Ando K; Sakaguchi R; Matsumoto T; Ogino H
    World J Microbiol Biotechnol; 2024 Jun; 40(7):230. PubMed ID: 38829459
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combinatorial metabolic pathway assembly in the yeast genome with RNA-guided Cas9.
    EauClaire SF; Zhang J; Rivera CG; Huang LL
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):1001-15. PubMed ID: 27138038
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolic Engineering of
    Kang Y; Xiao K; Wang D; Peng Z; Luo R; Liu X; Hu L; Hu G
    ACS Synth Biol; 2024 Oct; 13(10):3378-3388. PubMed ID: 39267441
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Overproduction of α-Farnesene in
    Wang J; Jiang W; Liang C; Zhu L; Li Y; Mo Q; Xu S; Chu A; Zhang L; Ding Z; Shi G
    J Agric Food Chem; 2021 Mar; 69(10):3103-3113. PubMed ID: 33683134
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids.
    Hasunuma T; Sakamoto T; Kondo A
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):1027-38. PubMed ID: 26521247
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae.
    Mans R; Hassing EJ; Wijsman M; Giezekamp A; Pronk JT; Daran JM; van Maris AJA
    FEMS Yeast Res; 2017 Dec; 17(8):. PubMed ID: 29145596
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multidimensional engineering of Saccharomyces cerevisiae for the efficient production of heme by exploring the cytotoxicity and tolerance of heme.
    Guo Q; Li J; Wang MR; Zhao M; Zhang G; Tang S; Xiong LB; Gao B; Wang FQ; Wei DZ
    Metab Eng; 2024 Sep; 85():46-60. PubMed ID: 39019249
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks.
    d'Espaux L; Ghosh A; Runguphan W; Wehrs M; Xu F; Konzock O; Dev I; Nhan M; Gin J; Reider Apel A; Petzold CJ; Singh S; Simmons BA; Mukhopadhyay A; García Martín H; Keasling JD
    Metab Eng; 2017 Jul; 42():115-125. PubMed ID: 28606738
    [TBL] [Abstract][Full Text] [Related]  

  • 58. L-malic acid production from xylose by engineered Saccharomyces cerevisiae.
    Kang NK; Lee JW; Ort DR; Jin YS
    Biotechnol J; 2022 Mar; 17(3):e2000431. PubMed ID: 34390209
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-Level Production of Hydroxytyrosol in Engineered
    Liu H; Wu X; Ma H; Li J; Liu Z; Guo X; Dong J; Zou S; Luo Y
    ACS Synth Biol; 2022 Nov; 11(11):3706-3713. PubMed ID: 36345886
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isolation and characterization of a mutant recombinant Saccharomyces cerevisiae strain with high efficiency xylose utilization.
    Tomitaka M; Taguchi H; Fukuda K; Akamatsu T; Kida K
    J Biosci Bioeng; 2013 Dec; 116(6):706-15. PubMed ID: 23810666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.