These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37272342)

  • 21. Enzyme-Loaded Nanoreactors Enable the Continuous Regeneration of Nicotinamide Adenine Dinucleotide in Artificial Metabolisms.
    Jo SM; Wurm FR; Landfester K
    Angew Chem Int Ed Engl; 2021 Mar; 60(14):7728-7734. PubMed ID: 33427354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of carboxylic acids on the stereospecific nicotinamide adenine dinucleotide-dependent and nicotinamide adenine dinucleotide-independent lactate dehydrogenases of Leuconostoc mesenteroides.
    Doelle HW
    J Bacteriol; 1971 Dec; 108(3):1290-5. PubMed ID: 4333321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Free energy surface of the Michaelis complex of lactate dehydrogenase: a network analysis of microsecond simulations.
    Pan X; Schwartz SD
    J Phys Chem B; 2015 Apr; 119(17):5430-6. PubMed ID: 25831215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate channeling in glycolysis: a phantom phenomenon.
    Wu XM; Gutfreund H; Lakatos S; Chock PB
    Proc Natl Acad Sci U S A; 1991 Jan; 88(2):497-501. PubMed ID: 1988948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of an electrochemical NAD+ recycling system involving a string-like carbon fiber to an enzyme reactor.
    Maeda H; Seki T; Iwamura K; Anai Y
    Biosci Biotechnol Biochem; 2010; 74(9):1931-5. PubMed ID: 20834161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoparticle-supported multi-enzyme biocatalysis with in situ cofactor regeneration.
    Liu W; Zhang S; Wang P
    J Biotechnol; 2009 Jan; 139(1):102-7. PubMed ID: 19000722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On-line lactate dehydrogenase substrate and activity determinations by capillary electrophoresis.
    Fujima JM; Danielson ND
    J Capillary Electrophor; 1996; 3(6):281-5. PubMed ID: 9384721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum dots as nano plug-in's for efficient NADH resonance energy routing.
    Akshath US; Vinayaka AC; Thakur MS
    Biosens Bioelectron; 2012; 38(1):411-5. PubMed ID: 22651966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-walled carbon nanotubes decrease lactate dehydrogenase activity in enzymatic reaction.
    Zhang F; Wang N; Kong J; Dai J; Chang F; Feng G; Bi S
    Bioelectrochemistry; 2011 Aug; 82(1):74-8. PubMed ID: 21612987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots.
    Samanta A; Walper SA; Susumu K; Dwyer CL; Medintz IL
    Nanoscale; 2015 May; 7(17):7603-14. PubMed ID: 25804284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate Channeling via a Transient Protein-Protein Complex: The case of D-Glyceraldehyde-3-Phosphate Dehydrogenase and L-Lactate Dehydrogenase.
    Svedružić ŽM; Odorčić I; Chang CH; Svedružić D
    Sci Rep; 2020 Jun; 10(1):10404. PubMed ID: 32591631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reexamination of the kinetics of the transfer of NADH between its complexes with glycerol-3-phosphate dehydrogenase and with lactate dehydrogenase.
    Chock PB; Gutfreund H
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8870-4. PubMed ID: 3194395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Label-free high-throughput assays to screen and characterize novel lactate dehydrogenase inhibitors.
    Vanderporten E; Frick L; Turincio R; Thana P; Lamarr W; Liu Y
    Anal Biochem; 2013 Oct; 441(2):115-22. PubMed ID: 23871998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photo-electrochemical Bioanalysis of Guanosine Monophosphate Using Coupled Enzymatic Reactions at a CdS/ZnS Quantum Dot Electrode.
    Sabir N; Khan N; Völkner J; Widdascheck F; del Pino P; Witte G; Riedel M; Lisdat F; Konrad M; Parak WJ
    Small; 2015 Nov; 11(43):5844-50. PubMed ID: 26395754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing cofactor recycling in the bioconversion of racemic alcohols to chiral amines with alcohol dehydrogenase and amine dehydrogenase by coupling cells and cell-free system.
    Liu J; Li Z
    Biotechnol Bioeng; 2019 Mar; 116(3):536-542. PubMed ID: 30536736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tunneling of redox enzymes to design nano-probes for monitoring NAD(+) dependent bio-catalytic activity.
    Akshath US; Bhatt P
    Biosens Bioelectron; 2016 Nov; 85():240-246. PubMed ID: 27179565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fine-Tuning the Electrocatalytic Regeneration of NADH Cofactor Using [Rh(Cp*)(bpy)Cl]
    Li W; Zhang C; Zheng Z; Zhang X; Zhang L; Kuhn A
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46673-46681. PubMed ID: 36215128
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay.
    Algar WR; Malanoski AP; Susumu K; Stewart MH; Hildebrandt N; Medintz IL
    Anal Chem; 2012 Nov; 84(22):10136-46. PubMed ID: 23128345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic study by pulse radiolysis of the lactate dehydrogenase-catalyzed chain oxidation of nicotinamide adenine dinucleotide by HO2 and O2-RADICALS.
    Bielski BH; Chan PC
    J Biol Chem; 1975 Jan; 250(1):318-21. PubMed ID: 237890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for hysteretic substrate channeling in the proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase coupled reaction of proline utilization A (PutA).
    Moxley MA; Sanyal N; Krishnan N; Tanner JJ; Becker DF
    J Biol Chem; 2014 Feb; 289(6):3639-51. PubMed ID: 24352662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.