These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37272600)

  • 1. Melting Point of a Confined Fluid within Nanopores: The Composition Effect on the Gibbs-Thomson Equation.
    Jin D; Zhong J
    J Phys Chem B; 2023 Jun; 127(23):5295-5307. PubMed ID: 37272600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Gibbs-Thomson equation for the crystallization of confined fluids.
    Scalfi L; Coasne B; Rotenberg B
    J Chem Phys; 2021 Mar; 154(11):114711. PubMed ID: 33752374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced phase stability and faster formation/dissociation kinetics in confined methane hydrate.
    Jin D; Coasne B
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding and Analyzing Freezing-Point Transitions of Confined Fluids within Nanopores.
    Shimizu S; Agrawal KV; O'Mahony M; Drahushuk LW; Manohar N; Myerson AS; Strano MS
    Langmuir; 2015 Sep; 31(37):10113-8. PubMed ID: 26332689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melting transition of Lennard-Jones fluid in cylindrical pores.
    Das CK; Singh JK
    J Chem Phys; 2014 May; 140(20):204703. PubMed ID: 24880307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of confinement on the solid-liquid coexistence of Lennard-Jones fluid.
    Das CK; Singh JK
    J Chem Phys; 2013 Nov; 139(17):174706. PubMed ID: 24206321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melting of aqueous NaCl solutions in porous materials: shifted phase transition distribution (SIDI) approach for determining NMR cryoporometry pore size distributions.
    Mailhiot SE; Tolkkinen K; Henschel H; Mareš J; Hanni M; Nieminen MT; Telkki VV
    Phys Chem Chem Phys; 2024 Jan; 26(4):3441-3450. PubMed ID: 38205817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freezing, melting and dynamics of supercooled water confined in porous glass.
    Neffati R; Judeinstein P; Rault J
    J Phys Condens Matter; 2020 Aug; 32(46):. PubMed ID: 32841209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pressure on the freezing of pure fluids and mixtures confined in nanopores.
    Coasne B; Czwartos J; Sliwinska-Bartkowiak M; Gubbins KE
    J Phys Chem B; 2009 Oct; 113(42):13874-81. PubMed ID: 19627116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melting and crystallization of ice in partially filled nanopores.
    Solveyra EG; de la Llave E; Scherlis DA; Molinero V
    J Phys Chem B; 2011 Dec; 115(48):14196-204. PubMed ID: 21863824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Monte Carlo simulation study of methane clathrate hydrates confined in slit-shaped pores.
    Chakraborty SN; Gelb LD
    J Phys Chem B; 2012 Feb; 116(7):2183-97. PubMed ID: 22320214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.
    Johnston JC; Molinero V
    J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal orientation of THF clathrates in nano-confinement by
    Sharma MK; Leong XN; Koh CA; Hartman RL
    Lab Chip; 2024 Feb; 24(4):798-809. PubMed ID: 38214152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic and Kinetic Transitions of Liquids in Nanoconfinement.
    Sen S; Risbud SH; Bartl MH
    Acc Chem Res; 2020 Dec; 53(12):2869-2878. PubMed ID: 33186005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freezing and melting of hydrogen confined in nanoporous silica.
    Kucheyev SO; Van Cleve E; Worsley MA
    J Phys Condens Matter; 2014 Jun; 26(22):225004. PubMed ID: 24823921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melting and freezing of water in cylindrical silica nanopores.
    Jähnert S; Vaca Chávez F; Schaumann GE; Schreiber A; Schönhoff M; Findenegg GH
    Phys Chem Chem Phys; 2008 Oct; 10(39):6039-51. PubMed ID: 18825292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalization of Young-Laplace, Kelvin, and Gibbs-Thomson equations for arbitrarily curved surfaces.
    Svintradze DV
    Biophys J; 2023 Mar; 122(5):892-904. PubMed ID: 36703559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of melting point depression for rare gas solids confined in carbon pores.
    Morishige K; Kataoka T
    J Chem Phys; 2015 Jul; 143(3):034707. PubMed ID: 26203042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triple point of Lennard-Jones fluid in slit nanopore: solidification of critical condensate.
    Kanda H; Miyahara M; Higashitani K
    J Chem Phys; 2004 Apr; 120(13):6173-9. PubMed ID: 15267503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enthalpy and interfacial free energy changes of water capillary condensed in mesoporous silica, MCM-41 and SBA-15.
    Kittaka S; Ishimaru S; Kuranishi M; Matsuda T; Yamaguchi T
    Phys Chem Chem Phys; 2006 Jul; 8(27):3223-31. PubMed ID: 16902715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.