These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37272750)

  • 1. Oxidative Phosphorylation Fueled by Fatty Acid Oxidation Sensitizes Leukemic Stem Cells to Cold.
    Griessinger E; Pereira-Martins D; Nebout M; Bosc C; Saland E; Boet E; Sahal A; Chiche J; Debayle D; Fleuriot L; Pruis M; De Mas V; Vergez F; Récher C; Huls G; Sarry JE; Schuringa JJ; Peyron JF
    Cancer Res; 2023 Aug; 83(15):2461-2470. PubMed ID: 37272750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turning Down the Temperature on Leukemia Stem Cells.
    Jones CL
    Cancer Res; 2023 Aug; 83(15):2441-2442. PubMed ID: 37525977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism.
    Farge T; Saland E; de Toni F; Aroua N; Hosseini M; Perry R; Bosc C; Sugita M; Stuani L; Fraisse M; Scotland S; Larrue C; Boutzen H; Féliu V; Nicolau-Travers ML; Cassant-Sourdy S; Broin N; David M; Serhan N; Sarry A; Tavitian S; Kaoma T; Vallar L; Iacovoni J; Linares LK; Montersino C; Castellano R; Griessinger E; Collette Y; Duchamp O; Barreira Y; Hirsch P; Palama T; Gales L; Delhommeau F; Garmy-Susini BH; Portais JC; Vergez F; Selak M; Danet-Desnoyers G; Carroll M; Récher C; Sarry JE
    Cancer Discov; 2017 Jul; 7(7):716-735. PubMed ID: 28416471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the metabolic vulnerability of acute myeloid leukemia blasts with a combination of venetoclax and 8-chloro-adenosine.
    Buettner R; Nguyen LXT; Morales C; Chen MH; Wu X; Chen LS; Hoang DH; Hernandez Vargas S; Pullarkat V; Gandhi V; Marcucci G; Rosen ST
    J Hematol Oncol; 2021 Apr; 14(1):70. PubMed ID: 33902674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous inhibition of Sirtuin 3 and cholesterol homeostasis targets acute myeloid leukemia stem cells by perturbing fatty acid β-oxidation and inducing lipotoxicity.
    O'Brien C; Ling T; Berman JM; Culp-Hill R; Reisz JA; Rondeau V; Jahangiri S; St-Germain J; Macwan V; Astori A; Zeng A; Hong JY; Li M; Yang M; Jana S; Gamboni F; Tsao E; Liu W; Dick JE; Lin H; Melnick A; Tikhonova A; Arruda A; Minden MD; Raught B; D'Alessandro A; Jones CL
    Haematologica; 2023 Sep; 108(9):2343-2357. PubMed ID: 37021547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipids and the cancer stemness regulatory system in acute myeloid leukemia.
    Lim INX; Nagree MS; Xie SZ
    Essays Biochem; 2022 Sep; 66(4):333-344. PubMed ID: 35996953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SYK inhibition targets acute myeloid leukemia stem cells by blocking their oxidative metabolism.
    Polak A; Bialopiotrowicz E; Krzymieniewska B; Wozniak J; Stojak M; Cybulska M; Kaniuga E; Mikula M; Jablonska E; Gorniak P; Noyszewska-Kania M; Szydlowski M; Piechna K; Piwocka K; Bugajski L; Lech-Maranda E; Barankiewicz J; Kolkowska-Lesniak A; Patkowska E; Glodkowska-Mrowka E; Baran N; Juszczynski P
    Cell Death Dis; 2020 Nov; 11(11):956. PubMed ID: 33159047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Amino Acid Metabolism Selectively Targets Human Leukemia Stem Cells.
    Jones CL; Stevens BM; D'Alessandro A; Reisz JA; Culp-Hill R; Nemkov T; Pei S; Khan N; Adane B; Ye H; Krug A; Reinhold D; Smith C; DeGregori J; Pollyea DA; Jordan CT
    Cancer Cell; 2018 Nov; 34(5):724-740.e4. PubMed ID: 30423294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergy of Venetoclax and 8-Chloro-Adenosine in AML: The Interplay of rRNA Inhibition and Fatty Acid Metabolism.
    Hoang DH; Morales C; Rodriguez IR; Valerio M; Guo J; Chen MH; Wu X; Horne D; Gandhi V; Chen LS; Zhang B; Pullarkat V; Rosen ST; Marcucci G; Buettner R; Nguyen LXT
    Cancers (Basel); 2022 Mar; 14(6):. PubMed ID: 35326597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting Mitochondrial Oxidative Phosphorylation Eradicates Acute Myeloid Leukemic Stem Cells.
    Peng M; Huang Y; Zhang L; Zhao X; Hou Y
    Front Oncol; 2022; 12():899502. PubMed ID: 35574326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The STAT3-MYC axis promotes survival of leukemia stem cells by regulating SLC1A5 and oxidative phosphorylation.
    Amaya ML; Inguva A; Pei S; Jones C; Krug A; Ye H; Minhajuddin M; Winters A; Furtek SL; Gamboni F; Stevens B; D'Alessandro A; Pollyea DA; Reigan P; Jordan CT
    Blood; 2022 Jan; 139(4):584-596. PubMed ID: 34525179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance to energy metabolism - targeted therapy of AML cells residual in the bone marrow microenvironment.
    Tabe Y; Konopleva M
    Cancer Drug Resist; 2023; 6(1):138-150. PubMed ID: 37065866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting mitochondrial respiration for the treatment of acute myeloid leukemia.
    Carter JL; Hege K; Kalpage HA; Edwards H; Hüttemann M; Taub JW; Ge Y
    Biochem Pharmacol; 2020 Dec; 182():114253. PubMed ID: 33011159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of mitochondrial oxidative phosphorylation by chidamide eradicates leukemic cells in AML.
    Wang JD; Xu JQ; Long ZJ; Weng JY
    Clin Transl Oncol; 2023 Jun; 25(6):1805-1820. PubMed ID: 36899123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Screening Unveils Pervasive RNA-Binding Protein Dependencies in Leukemic Stem Cells and Identifies ELAVL1 as a Therapeutic Target.
    Vujovic A; de Rooij L; Chahi AK; Chen HT; Yee BA; Loganathan SK; Liu L; Chan DCH; Tajik A; Tsao E; Moreira S; Joshi P; Xu J; Wong N; Balde Z; Jahangiri S; Zandi S; Aigner S; Dick JE; Minden MD; Schramek D; Yeo GW; Hope KJ
    Blood Cancer Discov; 2023 May; 4(3):180-207. PubMed ID: 36763002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic OXPHOS limitations underlie cellular bioenergetics in leukemia.
    Nelson MA; McLaughlin KL; Hagen JT; Coalson HS; Schmidt C; Kassai M; Kew KA; McClung JM; Neufer PD; Brophy P; Vohra NA; Liles D; Cabot MC; Fisher-Wellman KH
    Elife; 2021 Jun; 10():. PubMed ID: 34132194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapy-Resistant Acute Myeloid Leukemia Stem Cells Are Resensitized to Venetoclax + Azacitidine by Targeting Fatty Acid Desaturases 1 and 2.
    Culp-Hill R; Stevens BM; Jones CL; Pei S; Dzieciatkowska M; Minhajuddin M; Jordan CT; D'Alessandro A
    Metabolites; 2023 Mar; 13(4):. PubMed ID: 37110126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extinguishing the Embers: Targeting AML Metabolism.
    Culp-Hill R; D'Alessandro A; Pietras EM
    Trends Mol Med; 2021 Apr; 27(4):332-344. PubMed ID: 33121874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nicotinamide Metabolism Mediates Resistance to Venetoclax in Relapsed Acute Myeloid Leukemia Stem Cells.
    Jones CL; Stevens BM; Pollyea DA; Culp-Hill R; Reisz JA; Nemkov T; Gehrke S; Gamboni F; Krug A; Winters A; Pei S; Gustafson A; Ye H; Inguva A; Amaya M; Minhajuddin M; Abbott D; Becker MW; DeGregori J; Smith CA; D'Alessandro A; Jordan CT
    Cell Stem Cell; 2020 Nov; 27(5):748-764.e4. PubMed ID: 32822582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in pathogenesis research and challenges in treatment development for acute myeloid leukemia.
    Yamaguchi H
    Int J Hematol; 2024 Oct; 120(4):414-416. PubMed ID: 39225969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.