These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37272752)

  • 1. Deficiency of the Polycomb Protein RYBP and TET Methylcytosine Oxidases Promotes Extensive CpG Island Hypermethylation and Malignant Transformation.
    Cui W; Huang Z; Jin SG; Johnson J; Lau KH; Hostetter G; Pfeifer GP
    Cancer Res; 2023 Aug; 83(15):2480-2495. PubMed ID: 37272752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helicobacter pylori-infection-associated CpG island hypermethylation in the stomach and its possible association with polycomb repressive marks.
    Yoo EJ; Park SY; Cho NY; Kim N; Lee HS; Kang GH
    Virchows Arch; 2008 May; 452(5):515-24. PubMed ID: 18335237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multifactorial signature of DNA sequence and polycomb binding predicts aberrant CpG island methylation.
    McCabe MT; Lee EK; Vertino PM
    Cancer Res; 2009 Jan; 69(1):282-91. PubMed ID: 19118013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes.
    He J; Shen L; Wan M; Taranova O; Wu H; Zhang Y
    Nat Cell Biol; 2013 Apr; 15(4):373-84. PubMed ID: 23502314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands.
    Farcas AM; Blackledge NP; Sudbery I; Long HK; McGouran JF; Rose NR; Lee S; Sims D; Cerase A; Sheahan TW; Koseki H; Brockdorff N; Ponting CP; Kessler BM; Klose RJ
    Elife; 2012 Dec; 1():e00205. PubMed ID: 23256043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells.
    Putiri EL; Tiedemann RL; Thompson JJ; Liu C; Ho T; Choi JH; Robertson KD
    Genome Biol; 2014 Jun; 15(6):R81. PubMed ID: 24958354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line.
    Gal-Yam EN; Egger G; Iniguez L; Holster H; Einarsson S; Zhang X; Lin JC; Liang G; Jones PA; Tanay A
    Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12979-84. PubMed ID: 18753622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic insights into cancer-associated aberrant CpG island hypermethylation.
    Sproul D; Meehan RR
    Brief Funct Genomics; 2013 May; 12(3):174-90. PubMed ID: 23341493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberrant methylation and silencing of ARHI, an imprinted tumor suppressor gene in which the function is lost in breast cancers.
    Yuan J; Luo RZ; Fujii S; Wang L; Hu W; Andreeff M; Pan Y; Kadota M; Oshimura M; Sahin AA; Issa JP; Bast RC; Yu Y
    Cancer Res; 2003 Jul; 63(14):4174-80. PubMed ID: 12874023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycomb CBX7 promotes initiation of heritable repression of genes frequently silenced with cancer-specific DNA hypermethylation.
    Mohammad HP; Cai Y; McGarvey KM; Easwaran H; Van Neste L; Ohm JE; O'Hagan HM; Baylin SB
    Cancer Res; 2009 Aug; 69(15):6322-30. PubMed ID: 19602592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the p16(INK4a) gene product, methylation of the p16(INK4a) promoter region and expression of the polycomb-group gene BMI-1 in squamous cell lung carcinoma and premalignant endobronchial lesions.
    Breuer RH; Snijders PJ; Sutedja GT; Sewalt RG; Otte AP; Postmus PE; Meijer CJ; Raaphorst FM; Smit EF
    Lung Cancer; 2005 Jun; 48(3):299-306. PubMed ID: 15892997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequent hypomethylation in multiple promoter CpG islands is associated with global hypomethylation, but not with frequent promoter hypermethylation.
    Kaneda A; Tsukamoto T; Takamura-Enya T; Watanabe N; Kaminishi M; Sugimura T; Tatematsu M; Ushijima T
    Cancer Sci; 2004 Jan; 95(1):58-64. PubMed ID: 14720328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TET proteins and 5-methylcytosine oxidation in hematological cancers.
    Ko M; An J; Pastor WA; Koralov SB; Rajewsky K; Rao A
    Immunol Rev; 2015 Jan; 263(1):6-21. PubMed ID: 25510268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA methylation: TET proteins-guardians of CpG islands?
    Williams K; Christensen J; Helin K
    EMBO Rep; 2011 Dec; 13(1):28-35. PubMed ID: 22157888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique patterns of CpG island methylation in inflammatory bowel disease-associated colorectal cancers.
    Olaru AV; Cheng Y; Agarwal R; Yang J; David S; Abraham JM; Yu W; Kwon JH; Lazarev M; Brant SR; Marohn MR; Hutcheon DF; Harpaz N; Meltzer SJ; Mori Y
    Inflamm Bowel Dis; 2012 Apr; 18(4):641-8. PubMed ID: 21830278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylation of polycomb target genes in intestinal cancer is mediated by inflammation.
    Hahn MA; Hahn T; Lee DH; Esworthy RS; Kim BW; Riggs AD; Chu FF; Pfeifer GP
    Cancer Res; 2008 Dec; 68(24):10280-9. PubMed ID: 19074896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay.
    Rauch T; Wang Z; Zhang X; Zhong X; Wu X; Lau SK; Kernstine KH; Riggs AD; Pfeifer GP
    Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5527-32. PubMed ID: 17369352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA methylation patterns in lung carcinomas.
    Pfeifer GP; Rauch TA
    Semin Cancer Biol; 2009 Jun; 19(3):181-7. PubMed ID: 19429482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA Hypermethylation Encroachment at CpG Island Borders in Cancer Is Predisposed by H3K4 Monomethylation Patterns.
    Skvortsova K; Masle-Farquhar E; Luu PL; Song JZ; Qu W; Zotenko E; Gould CM; Du Q; Peters TJ; Colino-Sanguino Y; Pidsley R; Nair SS; Khoury A; Smith GC; Miosge LA; Reed JH; Kench JG; Rubin MA; Horvath L; Bogdanovic O; Lim SM; Polo JM; Goodnow CC; Stirzaker C; Clark SJ
    Cancer Cell; 2019 Feb; 35(2):297-314.e8. PubMed ID: 30753827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that general genomic hypomethylation and focal hypermethylation are two independent molecular events of non-Hodgkin's lymphoma.
    Pini JT; Franchina M; Taylor JM; Kay PH
    Oncol Res; 2004; 14(7-8):399-405. PubMed ID: 15301431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.