These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 37272803)

  • 1. A Programmable CRISPR/Cas9 Toolkit Improves Lycopene Production in Bacillus subtilis.
    Liu Y; Cheng H; Li H; Zhang Y; Wang M
    Appl Environ Microbiol; 2023 Jun; 89(6):e0023023. PubMed ID: 37272803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis.
    García-Moyano A; Larsen Ø; Gaykawad S; Christakou E; Boccadoro C; Puntervoll P; Bjerga GEK
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris.
    Liu Q; Shi X; Song L; Liu H; Zhou X; Wang Q; Zhang Y; Cai M
    Microb Cell Fact; 2019 Aug; 18(1):144. PubMed ID: 31434578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Simplified Method for CRISPR-Cas9 Engineering of Bacillus subtilis.
    Sachla AJ; Alfonso AJ; Helmann JD
    Microbiol Spectr; 2021 Oct; 9(2):e0075421. PubMed ID: 34523974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of Multiple Modules to Improve Amorphadiene Production in
    Song Y; He S; Abdallah II; Jopkiewicz A; Setroikromo R; van Merkerk R; Tepper PG; Quax WJ
    J Agric Food Chem; 2021 Apr; 69(16):4785-4794. PubMed ID: 33877851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Barriers to simultaneous multilocus integration in Bacillus subtilis tumble down: development of a straightforward screening method for the colorimetric detection of one-step multiple gene insertion using the CRISPR-Cas9 system.
    Ferrando J; Filluelo O; Zeigler DR; Picart P
    Microb Cell Fact; 2023 Jan; 22(1):21. PubMed ID: 36721198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis.
    Yuan P; Cui S; Liu Y; Li J; Lv X; Liu L; Du G
    Enzyme Microb Technol; 2020 Nov; 141():109652. PubMed ID: 33051011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a CRISPR-Cas9 Tool Kit for Comprehensive Engineering of Bacillus subtilis.
    Westbrook AW; Moo-Young M; Chou CP
    Appl Environ Microbiol; 2016 Aug; 82(16):4876-95. PubMed ID: 27260361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of IspF from
    Liu Z; Jin Y; Liu W; Tao Y; Wang G
    Biosci Rep; 2018 Feb; 38(1):. PubMed ID: 29335298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system.
    Zhang K; Duan X; Wu J
    Sci Rep; 2016 Jun; 6():27943. PubMed ID: 27305971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an efficient iterative genome editing method in Bacillus subtilis using the CRISPR-AsCpf1 system.
    Zhao X; Chen X; Xue Y; Wang X
    J Basic Microbiol; 2022 Jul; 62(7):824-832. PubMed ID: 35655368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Escherichia coli BL21 strain using simplified CRISPR-Cas9 and asymmetric homology arms recombineering.
    Shukal S; Lim XH; Zhang C; Chen X
    Microb Cell Fact; 2022 Feb; 21(1):19. PubMed ID: 35123478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of genome integration sites for developing a CRISPR-based gene expression toolkit in Yarrowia lipolytica.
    Liu X; Cui Z; Su T; Lu X; Hou J; Qi Q
    Microb Biotechnol; 2022 Aug; 15(8):2223-2234. PubMed ID: 35436041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 16. Development and application of a rapid all-in-one plasmid CRISPR-Cas9 system for iterative genome editing in Bacillus subtilis.
    Zou Y; Qiu L; Xie A; Han W; Zhang S; Li J; Zhao S; Li Y; Liang Y; Hu Y
    Microb Cell Fact; 2022 Aug; 21(1):173. PubMed ID: 35999638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Bacillus subtilis for l-valine overproduction.
    Westbrook AW; Ren X; Moo-Young M; Chou CP
    Biotechnol Bioeng; 2018 Nov; 115(11):2778-2792. PubMed ID: 29981237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Engineering of the MEP Pathway in
    Ma Y; McClure DD; Somerville MV; Proschogo NW; Dehghani F; Kavanagh JM; Coleman NV
    ACS Synth Biol; 2019 Jul; 8(7):1620-1630. PubMed ID: 31250633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Engineering of
    Abdallah II; Pramastya H; van Merkerk R; Sukrasno ; Quax WJ
    Front Microbiol; 2019; 10():218. PubMed ID: 30842758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis.
    Tran DTM; Phan TTP; Huynh TK; Dang NTK; Huynh PTK; Nguyen TM; Truong TTT; Tran TL; Schumann W; Nguyen HD
    Microb Cell Fact; 2017 Jul; 16(1):130. PubMed ID: 28743271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.