These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 37272915)
1. Dynamic Trapping and Manipulation of Self-Assembled Ag Nanoplates as Efficient Plasmonic Tweezers. Jia P; Shi H; Yan X; Pei Y; Sun X ACS Appl Mater Interfaces; 2023 Jun; 15(23):28731-28738. PubMed ID: 37272915 [TBL] [Abstract][Full Text] [Related]
2. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation. Simmons CS; Knouf EC; Tewari M; Lin LY J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841 [TBL] [Abstract][Full Text] [Related]
3. Enhanced trapping properties induced by strong LSPR-exciton coupling in plasmonic tweezers. Jia P; Shi H; Liu R; Yan X; Sun X Opt Express; 2023 Dec; 31(26):44177-44189. PubMed ID: 38178495 [TBL] [Abstract][Full Text] [Related]
4. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping. Kotsifaki DG; Truong VG; Chormaic SN Nano Lett; 2020 May; 20(5):3388-3395. PubMed ID: 32275440 [TBL] [Abstract][Full Text] [Related]
5. A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers. Aqhili A; Darbari S Sci Rep; 2021 Oct; 11(1):20656. PubMed ID: 34667247 [TBL] [Abstract][Full Text] [Related]
6. Plasmon enhanced optical tweezers with gold-coated black silicon. Kotsifaki DG; Kandyla M; Lagoudakis PG Sci Rep; 2016 May; 6():26275. PubMed ID: 27195446 [TBL] [Abstract][Full Text] [Related]
7. Thermophoresis suppression by graphene layer in tunable plasmonic tweezers based on hexagonal arrays of gold triangles: numerical study. Samadi M; Darbari S; Moravvej-Farshi MK Opt Express; 2021 Aug; 29(18):29056-29067. PubMed ID: 34615023 [TBL] [Abstract][Full Text] [Related]
8. Plasmonic nano-tweezer based on square nanoplate tetramers. Jin Q; Wang L; Yan S; Wei H; Huang Y Appl Opt; 2018 Jul; 57(19):5328-5332. PubMed ID: 30117824 [TBL] [Abstract][Full Text] [Related]
9. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Hong C; Yang S; Ndukaife JC Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919 [TBL] [Abstract][Full Text] [Related]
10. Plasmon-Assisted Trapping of Single Molecules in Nanogap. Wang M; Zhang J; Adijiang A; Zhao X; Tan M; Xu X; Zhang S; Zhang W; Zhang X; Wang H; Xiang D Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110065 [TBL] [Abstract][Full Text] [Related]
11. Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface. Zhang Y; Wang J; Shen J; Man Z; Shi W; Min C; Yuan G; Zhu S; Urbach HP; Yuan X Nano Lett; 2014 Nov; 14(11):6430-6. PubMed ID: 25302534 [TBL] [Abstract][Full Text] [Related]
12. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light. Zhang J; Liu W; Zhu Z; Yuan X; Qin S Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527 [TBL] [Abstract][Full Text] [Related]
13. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis. Lin L; Peng X; Wang M; Scarabelli L; Mao Z; Liz-Marzán LM; Becker MF; Zheng Y ACS Nano; 2016 Oct; 10(10):9659-9668. PubMed ID: 27640212 [TBL] [Abstract][Full Text] [Related]
14. Plasmonic tweezers: for nanoscale optical trapping and beyond. Zhang Y; Min C; Dou X; Wang X; Urbach HP; Somekh MG; Yuan X Light Sci Appl; 2021 Mar; 10(1):59. PubMed ID: 33731693 [TBL] [Abstract][Full Text] [Related]
15. Plasmonic trapping with a gold nanopillar. Wang K; Crozier KB Chemphyschem; 2012 Aug; 13(11):2639-48. PubMed ID: 22623501 [TBL] [Abstract][Full Text] [Related]
16. Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles. Ndukaife JC; Mishra A; Guler U; Nnanna AG; Wereley ST; Boltasseva A ACS Nano; 2014 Sep; 8(9):9035-43. PubMed ID: 25144369 [TBL] [Abstract][Full Text] [Related]
17. Origin and Future of Plasmonic Optical Tweezers. Huang JS; Yang YT Nanomaterials (Basel); 2015 Jun; 5(2):1048-1065. PubMed ID: 28347051 [TBL] [Abstract][Full Text] [Related]
18. Nonlinear modulation on optical trapping in a plasmonic bowtie structure. Zhang W; Zhang Y; Zhang S; Wang Y; Yang W; Min C; Yuan X Opt Express; 2021 Apr; 29(8):11664-11673. PubMed ID: 33984942 [TBL] [Abstract][Full Text] [Related]
19. Integrated Multifunctional Graphene Discs 2D Plasmonic Optical Tweezers for Manipulating Nanoparticles. Yang H; Mei Z; Li Z; Liu H; Deng H; Xiao G; Li J; Luo Y; Yuan L Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630991 [TBL] [Abstract][Full Text] [Related]
20. Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation. Zhao X; Zhao N; Shi Y; Xin H; Li B Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31973061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]