These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37272943)

  • 1. Can we predict long-duration running power output? A matter of selecting the appropriate predicting trials and empirical model.
    Ruiz-Alias SA; Ñancupil-Andrade AA; Pérez-Castilla A; García-Pinillos F
    Eur J Appl Physiol; 2023 Oct; 123(10):2283-2294. PubMed ID: 37272943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Half-Marathon Power Target using the 9/3-Minute Running Critical Power Test.
    Olaya-Cuartero J; Pueo B; Villalon-Gasch L; Jiménez-Olmedo JM
    J Sports Sci Med; 2023 Sep; 22(3):526-531. PubMed ID: 37711711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling of Running Performances: Comparisons of Power-Law, Hyperbolic, Logarithmic, and Exponential Models in Elite Endurance Runners.
    Vandewalle H
    Biomed Res Int; 2018; 2018():8203062. PubMed ID: 30402494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 'Critical Power' Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise.
    Jones AM; Vanhatalo A
    Sports Med; 2017 Mar; 47(Suppl 1):65-78. PubMed ID: 28332113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Difference in Pacing Between Time- and Distance-Based Time Trials in Trained Cyclists.
    Abbiss CR; Thompson KG; Lipski M; Meyer T; Skorski S
    Int J Sports Physiol Perform; 2016 Nov; 11(8):1018-1023. PubMed ID: 26868360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating Functional Threshold Power in Endurance Running from Shorter Time Trials Using a 6-Axis Inertial Measurement Sensor.
    Cartón-Llorente A; García-Pinillos F; Royo-Borruel J; Rubio-Peirotén A; Jaén-Carrillo D; Roche-Seruendo LE
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33467511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical Power in Laboratory and Field Conditions Using Single-visit Maximal Effort Trials.
    Triska C; Tschan H; Tazreiter G; Nimmerichter A
    Int J Sports Med; 2015 Nov; 36(13):1063-8. PubMed ID: 26258826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utility of the W´
    Galán-Rioja MÁ; González-Mohíno F; Skiba PF; González-Ravé JM
    Eur J Sport Sci; 2023 Jul; 23(7):1259-1268. PubMed ID: 36310098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Critical Power and W' Derived From 2 or 3 Maximal Tests.
    Simpson LP; Kordi M
    Int J Sports Physiol Perform; 2017 Jul; 12(6):825-830. PubMed ID: 27918663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of strength training on performance in endurance athletes.
    Beattie K; Kenny IC; Lyons M; Carson BP
    Sports Med; 2014 Jun; 44(6):845-65. PubMed ID: 24532151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time to exhaustion during cycling is not well predicted by critical power calculations.
    Pallarés JG; Lillo-Bevia JR; Morán-Navarro R; Cerezuela-Espejo V; Mora-Rodriguez R
    Appl Physiol Nutr Metab; 2020 Jul; 45(7):753-760. PubMed ID: 31935109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of the parameters of the power-duration relationship using maximal effort time-trials under laboratory conditions.
    Triska C; Karsten B; Heidegger B; Koller-Zeisler B; Prinz B; Nimmerichter A; Tschan H
    PLoS One; 2017; 12(12):e0189776. PubMed ID: 29244861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Critical Power in Elite Cyclists: Questioning the Validity of the 3-Minute All-Out Test.
    Bartram JC; Thewlis D; Martin DT; Norton KI
    Int J Sports Physiol Perform; 2017 Jul; 12(6):783-787. PubMed ID: 27834562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is Stryd critical power a meaningful parameter for runners?
    Dearing CG; Paton CD
    Biol Sport; 2023 Jul; 40(3):657-664. PubMed ID: 37398957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pacing strategy on work done above critical power during high-intensity exercise.
    Chidnok W; Dimenna FJ; Bailey SJ; Wilkerson DP; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2013 Jul; 45(7):1377-85. PubMed ID: 23377832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 9/3-Minute Running Critical Power Test: Mechanical Threshold Location With Respect to Ventilatory Thresholds and Maximum Oxygen Uptake.
    Ruiz-Alias SA; Olaya-Cuartero J; Ñancupil-Andrade AA; García-Pinillos F
    Int J Sports Physiol Perform; 2022 Jul; 17(7):1111-1118. PubMed ID: 35537709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power profiling and the power-duration relationship in cycling: a narrative review.
    Leo P; Spragg J; Podlogar T; Lawley JS; Mujika I
    Eur J Appl Physiol; 2022 Feb; 122(2):301-316. PubMed ID: 34708276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Flat and Uphill Cycling on the Power-duration Relationship.
    Hovorka M; Leo P; Simon D; Prinz B; Nimmerichter A
    Int J Sports Med; 2022 Jul; 43(8):701-707. PubMed ID: 35180799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of W(peak), VO2(peak) and the ventilation threshold from two different incremental exercise tests: relationship to endurance performance.
    Bentley DJ; McNaughton LR
    J Sci Med Sport; 2003 Dec; 6(4):422-35. PubMed ID: 14723392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.