These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37273601)

  • 1. Molecular Dynamics Simulations of the Thermal Decomposition of RDX/HTPB Explosives.
    Wu J; Wu J; Li J; Shang Y; Chen L
    ACS Omega; 2023 May; 8(21):18851-18862. PubMed ID: 37273601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ReaxFF molecular dynamics simulations on thermal decomposition of RDX-based CMDB propellants.
    Wei H; Li T; Yao K; Xuan Z
    J Mol Model; 2022 Nov; 28(12):388. PubMed ID: 36383257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal decomposition mechanism of HMX/HTPB hybrid explosives studied by reactive molecular dynamics.
    Chen F; Li T; Zhao L; Guo G; Dong L; Mi F; Jia X; Ning R; Wang J; Cao D
    J Mol Model; 2024 Jun; 30(7):224. PubMed ID: 38907749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The thermal decomposition process of Composition B by ReaxFF/lg force field.
    Meng J; Zhang S; Gou R; Chen Y; Li Y; Chen M; Li Z
    J Mol Model; 2020 Aug; 26(9):245. PubMed ID: 32820387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal decomposition of energetic materials. 5. reaction processes of 1,3,5-trinitrohexahydro-s-triazine below its melting point.
    Maharrey S; Behrens R
    J Phys Chem A; 2005 Dec; 109(49):11236-49. PubMed ID: 16331907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives.
    Mei Z; An Q; Zhao FQ; Xu SY; Ju XH
    Phys Chem Chem Phys; 2018 Nov; 20(46):29341-29350. PubMed ID: 30444501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction Mechanism of Composite Propellant Components under Heating Conditions.
    Liang J; Nie J; Zhang H; Guo X; Yan S; Han M
    Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic Reaction Properties for Different HMX/HTPB Composites: A Theoretical Study of Shock Decomposition.
    He ZH; Huang YY; Ji GF; Chen J; Wu Q
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The thermal decomposition mechanism of RDX/AP composites:
    Pang K; Wen M; Chang X; Xu Y; Chu Q; Chen D
    Phys Chem Chem Phys; 2024 Apr; 26(15):11545-11557. PubMed ID: 38532730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing the thermal decomposition mechanism of RDX crystals by a neural network potential.
    Chu Q; Chang X; Ma K; Fu X; Chen D
    Phys Chem Chem Phys; 2022 Nov; 24(42):25885-25894. PubMed ID: 36259743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the anisotropic response of condensed-phase RDX under repeated stress wave loading via ReaxFF molecular dynamics simulation.
    Wang N; Peng J; Pang A; Hu J; He T
    J Mol Model; 2016 Sep; 22(9):229. PubMed ID: 27568527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High pressure-high temperature decomposition of γ-cyclotrimethylene trinitramine.
    Dreger ZA; McCluskey MD; Gupta YM
    J Phys Chem A; 2012 Oct; 116(39):9680-8. PubMed ID: 22971173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetic material response to ultrafast indirect laser heating.
    Dang NC; Gottfried JL; De Lucia FC
    Appl Opt; 2017 Jan; 56(3):B85-B91. PubMed ID: 28157869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure and Polymorph Dependent Thermal Decomposition Mechanism of Molecular Materials: A Case of 1,3,5,-Trinitro-1,3,5,-triazine.
    Wang C; Zhang C; Xue X
    J Phys Chem A; 2022 Feb; 126(4):463-472. PubMed ID: 35061375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of a superfine RDX/Al composite as an energetic material by mechanical ball-milling method and the study of its thermal properties.
    Xiao L; Zhang Y; Wang X; Hao G; Liu J; Ke X; Chen T; Jiang W
    RSC Adv; 2018 Nov; 8(66):38047-38055. PubMed ID: 35558610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive molecular dynamics simulations on the decomposition process of 1,3,5-trinitro-1,3,5-triazine crystal under high temperatures and pressure.
    Sun ZJ; Li H; Zhu W
    J Mol Model; 2023 Aug; 29(9):292. PubMed ID: 37615822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decomposition of γ-cyclotrimethylene trinitramine (γ-RDX): relevance for shock wave initiation.
    Dreger ZA; Gupta YM
    J Phys Chem A; 2012 Aug; 116(34):8713-7. PubMed ID: 22873636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the mechanical and decomposition properties of high energetic materials (α-RDX, β-HMX, and ε-CL-20) using a neural network potential.
    Wen M; Chang X; Xu Y; Chen D; Chu Q
    Phys Chem Chem Phys; 2024 Mar; 26(13):9984-9997. PubMed ID: 38477375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The solid phase thermal decomposition and nanocrystal effect of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) via ReaxFF large-scale molecular dynamics simulation.
    Zheng K; Wen Y; Huang B; Wang J; Chen J; Xie G; Lv G; Liu J; Qiao Z; Yang G
    Phys Chem Chem Phys; 2019 Aug; 21(31):17240-17252. PubMed ID: 31347632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic Investigation on the Initial Thermal Decomposition of Energetic Materials FOX-7 and RDX in the Crystal and Gas Phase: An MM/DFT-Based ONIOM Calculation.
    Ma Y; Lv M; Shang F; Zhang C; Liu J; Zhou P
    J Phys Chem A; 2022 Mar; 126(10):1666-1673. PubMed ID: 35258304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.