These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37273609)

  • 81. Experimental Study on the Physisorption Characteristics of O
    Tan B; Cheng G; Zhu X; Yang X
    Sci Rep; 2020 Apr; 10(1):6946. PubMed ID: 32332828
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Characterization of Pore Structure and Its Relationship with Methane Adsorption on Medium-High Volatile Bituminous Coal: An Experimental Study Using Nuclear Magnetic Resonance.
    Zhang B; Fu X; Deng Z; Hao M
    J Nanosci Nanotechnol; 2021 Jan; 21(1):515-528. PubMed ID: 33213650
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Pore Structure and Fractal Dimension in Marine Mature Silicon-Rich Shale of the Dalong Formation in Western Hubei.
    Liu W; Zhu Q; Qiao Y; Pan J; Wu W; Chen L
    ACS Omega; 2024 Mar; 9(10):11718-11729. PubMed ID: 38496967
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Research on Pore-Fracture Structure Alteration and Gas Emission Homogenization in an Outburst Coal Seam Induced by CO
    Yang B; Cao Y; Zhang X; Zhang J; Guo S
    ACS Omega; 2024 Jun; 9(22):23917-23926. PubMed ID: 38854574
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Interactions and exchange of CO2 and H2O in coals: an investigation by low-field NMR relaxation.
    Sun X; Yao Y; Liu D; Elsworth D; Pan Z
    Sci Rep; 2016 Jan; 6():19919. PubMed ID: 26817784
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Fracturing in coals with different fluids: an experimental comparison between water, liquid CO
    Yang J; Lian H; Li L
    Sci Rep; 2020 Oct; 10(1):18681. PubMed ID: 33122710
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Effect of Mixed Acid Fluid on the Pore Structure of High Rank Coal and Acid Fluid Optimization.
    Wang C; Gao J; Zhang X
    ACS Omega; 2022 Sep; 7(37):33280-33294. PubMed ID: 36157754
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Characterization of coal porosity for naturally tectonically stressed coals in Huaibei coal field, China.
    Li X; Ju Y; Hou Q; Li Z; Wei M; Fan J
    ScientificWorldJournal; 2014; 2014():560450. PubMed ID: 25126601
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Particle Size Effect and Temperature Effect on the Pore Structure of Low-Rank Coal.
    Li T; Wu JJ; Wang XG; Huang H
    ACS Omega; 2021 Mar; 6(8):5865-5877. PubMed ID: 33681625
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Effect of Desorption Damage on the Kinetic Characteristics of Coal Particle Gas Desorption.
    Liu X; Fu X; Xiao B; Cai D; Zhao L; Yao C; Wu Q
    ACS Omega; 2023 Sep; 8(38):34879-34897. PubMed ID: 37780016
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Construction of Buertai Coal Macromolecular Model and GCMC Simulation of Methane Adsorption in Micropores.
    Yang Z; Yin Z; Xue W; Meng Z; Li Y; Long J; Wang J
    ACS Omega; 2021 May; 6(17):11173-11182. PubMed ID: 34056272
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Small Angle X-ray Scattering Test of Hami Coal Sample Nanostructure Parameters with Gas Adsorbed Under Different Pressures.
    Nie B; Wang K; Fan Y; Zhao J; Zhang L; Ju Y; Ge Z
    J Nanosci Nanotechnol; 2021 Jan; 21(1):538-546. PubMed ID: 33213652
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Pore Characteristics for Efficient CO
    Ren M; Sevilla M; Fuertes AB; Mokaya R; Tour JM; Jalilov AS
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44390-44398. PubMed ID: 31689084
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Pore Structure and Fractal Characteristics of Deep Shale: A Case Study from Permian Shanxi Formation Shale, from the Ordos Basin.
    Yang Y; Zhang J; Xu L; Li P; Liu Y; Dang W
    ACS Omega; 2022 Mar; 7(11):9229-9243. PubMed ID: 35350342
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Study on the Fractal Characteristics and Seepage Properties of Channels Filled by Coal Particles.
    Yang H; Liu Z; Yu Z; Li R; Wang S
    Environ Sci Pollut Res Int; 2023 Nov; 30(53):113917-113931. PubMed ID: 37855964
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Molecular simulation of CO
    Zhou W; Wang H; Zhang Z; Chen H; Liu X
    RSC Adv; 2019 Jan; 9(6):3004-3011. PubMed ID: 35518961
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Characteristics of Coal Porosity Changes before and after Triaxial Compression Shear Deformation under Different Confining Pressures.
    He H; Wang K; Pan J; Wang X; Wang Z
    ACS Omega; 2022 May; 7(19):16728-16739. PubMed ID: 35601307
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Fractal Analysis in Pore Size Distributions of Different Bituminous Coals.
    Zhu J; He F; Zhang Y; Zhang R; Zhang B
    Sci Rep; 2019 Dec; 9(1):18162. PubMed ID: 31796834
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Comprehensive Analysis of Connectivity and Permeability of a Pore-Fracture Structure in Low Permeability Seam of Huainan-Huaibei Coalfield.
    Wang Z; Fang H; Sang S; Guo J; Yu S; Liu H; Xu H
    ACS Omega; 2024 Apr; 9(13):15357-15371. PubMed ID: 38585139
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Experimental Investigation on Pore-Fracture Variations in Coal Affected by Carbon Disulfide.
    Zheng C; Li X; Li H; Jiang B; Chen Z
    ACS Omega; 2023 Oct; 8(41):38426-38440. PubMed ID: 37867664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.