These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 37273987)

  • 41. A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord injury repair.
    Yang B; Liang C; Chen D; Cheng F; Zhang Y; Wang S; Shu J; Huang X; Wang J; Xia K; Ying L; Shi K; Wang C; Wang X; Li F; Zhao Q; Chen Q
    Bioact Mater; 2022 Sep; 15():103-119. PubMed ID: 35386356
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of Regenerative Effects of Transplanting Three-Dimensional Longitudinal Scaffold Loaded-Human Mesenchymal Stem Cells and Human Neural Stem Cells on Spinal Cord Completely Transected Rats.
    Zou Y; Zhao Y; Xiao Z; Chen B; Ma D; Shen H; Gu R; Dai J
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1671-1680. PubMed ID: 33455365
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury.
    Sun Y; Yang C; Zhu X; Wang JJ; Liu XY; Yang XP; An XW; Liang J; Dong HJ; Jiang W; Chen C; Wang ZG; Sun HT; Tu Y; Zhang S; Chen F; Li XH
    J Biomed Mater Res A; 2019 Sep; 107(9):1898-1908. PubMed ID: 30903675
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Construction of adhesive and bioactive silk fibroin hydrogel for treatment of spinal cord injury.
    Liu Y; Zhang Z; Zhang Y; Luo B; Liu X; Cao Y; Pei R
    Acta Biomater; 2023 Mar; 158():178-189. PubMed ID: 36584800
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomimetic 3D-printed scaffolds for spinal cord injury repair.
    Koffler J; Zhu W; Qu X; Platoshyn O; Dulin JN; Brock J; Graham L; Lu P; Sakamoto J; Marsala M; Chen S; Tuszynski MH
    Nat Med; 2019 Feb; 25(2):263-269. PubMed ID: 30643285
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [PREPARATION OF BIONIC COLLAGEN-HEPARIN SULFATE SPINAL CORD SCAFFOLD WITH THREE-DIMENSIONAL PRINT TECHNOLOGY].
    Zhang R; Tu Y; Zhao M; Chen C; Liang Haiqian ; Wang J; Zhang S; Li X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug; 29(8):1022-7. PubMed ID: 26677627
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced Neural Regeneration with a Concomitant Treatment of Framework Nucleic Acid and Stem Cells in Spinal Cord Injury.
    Ma W; Zhan Y; Zhang Y; Xie X; Mao C; Lin Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2095-2106. PubMed ID: 31845577
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combination therapy of stem cell derived neural progenitors and drug delivery of anti-inhibitory molecules for spinal cord injury.
    Wilems TS; Pardieck J; Iyer N; Sakiyama-Elbert SE
    Acta Biomater; 2015 Dec; 28():23-32. PubMed ID: 26384702
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair.
    Serafin A; Rubio MC; Carsi M; Ortiz-Serna P; Sanchis MJ; Garg AK; Oliveira JM; Koffler J; Collins MN
    Biomater Res; 2022 Nov; 26(1):63. PubMed ID: 36414973
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spinal cord decellularized matrix scaffold loaded with engineered basic fibroblast growth factor-overexpressed human umbilical cord mesenchymal stromal cells promoted the recovery of spinal cord injury.
    He W; Shi C; Yin J; Huang F; Yan W; Deng J; Zhang B; Wang B; Wang H
    J Biomed Mater Res B Appl Biomater; 2023 Jan; 111(1):51-61. PubMed ID: 35799479
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mash-1 modified neural stem cells transplantation promotes neural stem cells differentiation into neurons to further improve locomotor functional recovery in spinal cord injury rats.
    Deng M; Xie P; Chen Z; Zhou Y; Liu J; Ming J; Yang J
    Gene; 2021 May; 781():145528. PubMed ID: 33631250
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sustained delivery of NT-3 and curcumin augments microenvironment modulation effects of decellularized spinal cord matrix hydrogel for spinal cord injury repair.
    Chen J; Cheng X; Yu Z; Deng R; Cui R; Zhou J; Long H; Hu Y; Quan D; Bai Y
    Regen Biomater; 2024; 11():rbae039. PubMed ID: 38746707
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent Advances in Implantable 3D-Printed Scaffolds for Repair of Spinal Cord Injury.
    Khaledian S; Mohammadi G; Abdoli M; Fatahian A; Fatahian A; Fatahian R
    Adv Pharm Bull; 2024 Jul; 14(2):331-345. PubMed ID: 39206398
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Peptide Hydrogel Scaffold for Mesenchymal Precursor Cells Implanted to Injured Adult Rat Spinal Cord.
    Wiseman TM; Baron-Heeris D; Houwers IGJ; Keenan R; Williams RJ; Nisbet DR; Harvey AR; Hodgetts SI
    Tissue Eng Part A; 2021 Aug; 27(15-16):993-1007. PubMed ID: 33040713
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel cytokine-loaded PCL-PEG scaffold composites for spinal cord injury repair.
    Wang P; Wang H; Ma K; Wang S; Yang C; Mu N; Yang F; Feng H; Chen T
    RSC Adv; 2020 Feb; 10(11):6306-6314. PubMed ID: 35495987
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Dual Functional Scaffold Tethered with EGFR Antibody Promotes Neural Stem Cell Retention and Neuronal Differentiation for Spinal Cord Injury Repair.
    Xu B; Zhao Y; Xiao Z; Wang B; Liang H; Li X; Fang Y; Han S; Li X; Fan C; Dai J
    Adv Healthc Mater; 2017 May; 6(9):. PubMed ID: 28233428
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermosensitive quaternized chitosan hydrogel scaffolds promote neural differentiation in bone marrow mesenchymal stem cells and functional recovery in a rat spinal cord injury model.
    Huang C; Liu Y; Ding J; Dai Y; Le L; Wang L; Ding E; Yang J
    Cell Tissue Res; 2021 Jul; 385(1):65-85. PubMed ID: 33760948
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D printing of injury-preconditioned secretome/collagen/heparan sulfate scaffolds for neurological recovery after traumatic brain injury in rats.
    Liu XY; Chang ZH; Chen C; Liang J; Shi JX; Fan X; Shao Q; Meng WW; Wang JJ; Li XH
    Stem Cell Res Ther; 2022 Dec; 13(1):525. PubMed ID: 36536463
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair.
    Hamid OA; Eltaher HM; Sottile V; Yang J
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111707. PubMed ID: 33545866
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three-dimensional bioprinting sodium alginate/gelatin scaffold combined with neural stem cells and oligodendrocytes markedly promoting nerve regeneration after spinal cord injury.
    Liu S; Yang H; Chen D; Xie Y; Tai C; Wang L; Wang P; Wang B
    Regen Biomater; 2022; 9():rbac038. PubMed ID: 35801010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.