These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37274395)

  • 1. Preparation of size-controlled LiCoPO
    Yanagishita T; Otomo R; Masuda H
    RSC Adv; 2023 May; 13(24):16549-16558. PubMed ID: 37274395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of monodisperse polymer nanoparticles by membrane emulsification using ordered anodic porous alumina.
    Yanagishita T; Fujimura R; Nishio K; Masuda H
    Langmuir; 2010 Feb; 26(3):1516-9. PubMed ID: 20000338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of monodisperse SiO2 nanoparticles by membrane emulsification using ideally ordered anodic porous alumina.
    Yanagishita T; Tomabechi Y; Nishio K; Masuda H
    Langmuir; 2004 Feb; 20(3):554-5. PubMed ID: 15773073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structured microparticles with tailored properties produced by membrane emulsification.
    Vladisavljević GT
    Adv Colloid Interface Sci; 2015 Nov; 225():53-87. PubMed ID: 26329593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous Mixed-Metal Oxide Li-Ion Battery Electrodes by Shear-Induced Co-assembly of Precursors and Tailored Polymer Particles.
    Boehm AK; Husmann S; Besch M; Janka O; Presser V; Gallei M
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61166-61179. PubMed ID: 34913692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observation of antisite defects in LiCoPO4 cathode materials by annular dark- and bright-field electron microscopy.
    Truong QD; Devaraju MK; Tomai T; Honma I
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9926-32. PubMed ID: 24060566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of membrane material on the production of colloidal emulsions by premix membrane emulsification.
    Gehrmann S; Bunjes H
    Eur J Pharm Biopharm; 2018 May; 126():140-148. PubMed ID: 27870930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Controlled Synthesis of Spinel LiMn
    Hai Y; Zhang Z; Liu H; Liao L; Fan P; Wu Y; Lv G; Mei L
    Front Chem; 2019; 7():437. PubMed ID: 31259169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved electrochemical performance of LiCoPO4 nanoparticles for lithium ion batteries.
    Gu HB; Jin B; Jun DK; Han Z
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4037-40. PubMed ID: 18047113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials.
    Kozawa T; Naito M
    Sci Technol Adv Mater; 2015 Feb; 16(1):015006. PubMed ID: 27877756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries.
    Antipov EV; Khasanova NR; Fedotov SS
    IUCrJ; 2015 Jan; 2(Pt 1):85-94. PubMed ID: 25610630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of Ordered Anodic Porous Alumina with Single-Nanometer-Order-Size Holes by Atomic Layer Deposition.
    Yanagishita T; Otsuka M; Takei T; Uto S; Masuda H
    Langmuir; 2021 Jul; 37(27):8331-8338. PubMed ID: 34185523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LiCoPO4 cathode from a CoHPO4·xH2O nanoplate precursor for high voltage Li-ion batteries.
    Choi D; Li X; Henderson WA; Huang Q; Nune SK; Lemmon JP; Sprenkle VL
    Heliyon; 2016 Feb; 2(2):e00081. PubMed ID: 27441257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite Cathode Architecture with Improved Oxidation Kinetics in Polymer-Based Li-O
    Mushtaq M; Guo X; Wang Y; Hao L; Lin Z; Yu H
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30259-30267. PubMed ID: 32525303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Alumina Membrane Filters with Framework Structures by Al Anodization.
    Boushi Y; Yanagishita T
    Langmuir; 2024 Mar; 40(10):5278-5287. PubMed ID: 38393323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries.
    Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA
    Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SnO
    Yanagishita T; Takai H; Kondo T; Masuda H
    Nanotechnology; 2021 Apr; 32(14):145603. PubMed ID: 33339016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional Surface Construction for Long-Term Cycling Stability of Li-Rich Mn-Based Layered Oxide Cathode for Li-Ion Batteries.
    Yan C; Shao Q; Yao Z; Gao M; Zhang C; Chen G; Sun Q; Sun W; Liu Y; Gao M; Pan H
    Small; 2022 Oct; 18(43):e2107910. PubMed ID: 35768284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De-agglomeration of cathode composites for direct recycling of Li-ion batteries.
    Zhan R; Payne T; Leftwich T; Perrine K; Pan L
    Waste Manag; 2020 Mar; 105():39-48. PubMed ID: 32018141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.