These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37275235)

  • 1. A new approach of using organ-on-a-chip and fluid-structure interaction modeling to investigate biomechanical characteristics in tissue-engineered blood vessels.
    Wang L; Chen Z; Xu Z; Yang Y; Wang Y; Zhu J; Guo X; Tang D; Gu Z
    Front Physiol; 2023; 14():1210826. PubMed ID: 37275235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffold-free, Human Mesenchymal Stem Cell-Based Tissue Engineered Blood Vessels.
    Jung Y; Ji H; Chen Z; Fai Chan H; Atchison L; Klitzman B; Truskey G; Leong KW
    Sci Rep; 2015 Oct; 5():15116. PubMed ID: 26456074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioengineered vascular access maintains structural integrity in response to arteriovenous flow and repeated needle puncture.
    Tillman BW; Yazdani SK; Neff LP; Corriere MA; Christ GJ; Soker S; Atala A; Geary RL; Yoo JJ
    J Vasc Surg; 2012 Sep; 56(3):783-93. PubMed ID: 22917043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered living blood vessels: functional endothelia generated from human umbilical cord-derived progenitors.
    Schmidt D; Asmis LM; Odermatt B; Kelm J; Breymann C; Gössi M; Genoni M; Zund G; Hoerstrup SP
    Ann Thorac Surg; 2006 Oct; 82(4):1465-71; discussion 1471. PubMed ID: 16996955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling.
    Chandra S; Raut SS; Jana A; Biederman RW; Doyle M; Muluk SC; Finol EA
    J Biomech Eng; 2013 Aug; 135(8):81001. PubMed ID: 23719760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulation of remodeling pathways to enhance the mechanical properties of a tissue engineered blood vessel.
    Ogle BM; Mooradian DL
    J Biomech Eng; 2002 Dec; 124(6):724-33. PubMed ID: 12596641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics.
    Sturla F; Votta E; Stevanella M; Conti CA; Redaelli A
    Med Eng Phys; 2013 Dec; 35(12):1721-30. PubMed ID: 24001692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biaxial biomechanical properties of self-assembly tissue-engineered blood vessels.
    Zaucha MT; Gauvin R; Auger FA; Germain L; Gleason RL
    J R Soc Interface; 2011 Feb; 8(55):244-56. PubMed ID: 20554564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time observation of leukocyte-endothelium interactions in tissue-engineered blood vessel.
    Chen Z; Tang M; Huang D; Jiang W; Li M; Ji H; Park J; Xu B; Atchison LJ; Truskey GA; Leong KW
    Lab Chip; 2018 Jul; 18(14):2047-2054. PubMed ID: 29927449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid-Structure Interaction Study of Transcatheter Aortic Valve Dynamics Using Smoothed Particle Hydrodynamics.
    Mao W; Li K; Sun W
    Cardiovasc Eng Technol; 2016 Dec; 7(4):374-388. PubMed ID: 27844463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Advances of construction of tissue engineered blood vessels].
    Wnag SQ; Zhu AP; Hu QG
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2001 Sep; 15(5):286-90. PubMed ID: 11761855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks.
    Kelm JM; Lorber V; Snedeker JG; Schmidt D; Broggini-Tenzer A; Weisstanner M; Odermatt B; Mol A; Zünd G; Hoerstrup SP
    J Biotechnol; 2010 Jul; 148(1):46-55. PubMed ID: 20223267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic testing methodologies for tissue engineered blood vessels.
    Berglund JD; Nerem RM; Sambanis A
    J Biomech Eng; 2005 Dec; 127(7):1176-84. PubMed ID: 16502660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aortic hemodynamics assessment prior and after valve sparing reconstruction: A patient-specific 4D flow-based FSI model.
    Nannini G; Caimi A; Palumbo MC; Saitta S; Girardi LN; Gaudino M; Roman MJ; Weinsaft JW; Redaelli A
    Comput Biol Med; 2021 Aug; 135():104581. PubMed ID: 34174756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Combination of Tissue-Engineered Blood Vessel Constructs and Parallel Flow Chamber Provides a Potential Alternative to In Vivo Drug Testing Models.
    Njoroge W; Hernández ACH; Musa FI; Butler R; Harper AGS; Yang Y
    Pharmaceutics; 2021 Mar; 13(3):. PubMed ID: 33807995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement.
    Javadzadegan A; Yong AS; Chang M; Ng MK; Behnia M; Kritharides L
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):260-272. PubMed ID: 27467730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2D Computational Fluid Dynamic Modeling of Human Ventricle System Based on Fluid-Solid Interaction and Pulsatile Flow.
    Masoumi N; Framanzad F; Zamanian B; Seddighi AS; Moosavi MH; Najarian S; Bastani D
    Basic Clin Neurosci; 2013; 4(1):64-75. PubMed ID: 25337330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.