These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 37275386)
1. Melanocyte-keratinocyte cross-talk in vitiligo. Touni AA; Shivde RS; Echuri H; Abdel-Aziz RTA; Abdel-Wahab H; Kundu RV; Le Poole IC Front Med (Lausanne); 2023; 10():1176781. PubMed ID: 37275386 [TBL] [Abstract][Full Text] [Related]
2. Keratinocyte dysfunction in vitiligo epidermis: cytokine microenvironment and correlation to keratinocyte apoptosis. Moretti S; Fabbri P; Baroni G; Berti S; Bani D; Berti E; Nassini R; Lotti T; Massi D Histol Histopathol; 2009 Jul; 24(7):849-57. PubMed ID: 19475531 [TBL] [Abstract][Full Text] [Related]
3. Less keratinocyte-derived factors related to more keratinocyte apoptosis in depigmented than normally pigmented suction-blistered epidermis may cause passive melanocyte death in vitiligo. Lee AY; Kim NH; Choi WI; Youm YH J Invest Dermatol; 2005 May; 124(5):976-83. PubMed ID: 15854039 [TBL] [Abstract][Full Text] [Related]
4. Role of keratinocytes in the development of vitiligo. Lee AY Ann Dermatol; 2012 May; 24(2):115-25. PubMed ID: 22577260 [TBL] [Abstract][Full Text] [Related]
5. New insights into the pathogenesis of vitiligo: imbalance of epidermal cytokines at sites of lesions. Moretti S; Spallanzani A; Amato L; Hautmann G; Gallerani I; Fabiani M; Fabbri P Pigment Cell Res; 2002 Apr; 15(2):87-92. PubMed ID: 11936274 [TBL] [Abstract][Full Text] [Related]
6. Aberrant expression of complement regulatory proteins, membrane cofactor protein and decay accelerating factor, in the involved epidermis of patients with vitiligo. van den Wijngaard RM; Asghar SS; Pijnenborg AC; Tigges AJ; Westerhof W; Das PK Br J Dermatol; 2002 Jan; 146(1):80-7. PubMed ID: 11841370 [TBL] [Abstract][Full Text] [Related]
7. Micro RNAs upregulated in Vitiligo skin play an important role in its aetiopathogenesis by altering TRP1 expression and keratinocyte-melanocytes cross-talk. Vaish U; Kumar AA; Varshney S; Ghosh S; Sengupta S; Sood C; Kar HK; Sharma P; Natarajan VT; Gokhale RS; Rani R Sci Rep; 2019 Jul; 9(1):10079. PubMed ID: 31300697 [TBL] [Abstract][Full Text] [Related]
8. New insight into the role of exosomes in vitiligo. Wong PM; Yang L; Yang L; Wu H; Li W; Ma X; Katayama I; Zhang H Autoimmun Rev; 2020 Nov; 19(11):102664. PubMed ID: 32942029 [TBL] [Abstract][Full Text] [Related]
9. Type-1 cytokines regulate MMP-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo. Boukhedouni N; Martins C; Darrigade AS; Drullion C; Rambert J; Barrault C; Garnier J; Jacquemin C; Thiolat D; Lucchese F; Morel F; Ezzedine K; Taieb A; Bernard FX; Seneschal J; Boniface K JCI Insight; 2020 Jun; 5(11):. PubMed ID: 32369451 [TBL] [Abstract][Full Text] [Related]
10. Trends in Regenerative Medicine: Repigmentation in Vitiligo Through Melanocyte Stem Cell Mobilization. Birlea SA; Costin GE; Roop DR; Norris DA Med Res Rev; 2017 Jul; 37(4):907-935. PubMed ID: 28029168 [TBL] [Abstract][Full Text] [Related]
11. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. van den Boorn JG; Konijnenberg D; Dellemijn TA; van der Veen JP; Bos JD; Melief CJ; Vyth-Dreese FA; Luiten RM J Invest Dermatol; 2009 Sep; 129(9):2220-32. PubMed ID: 19242513 [TBL] [Abstract][Full Text] [Related]
13. Differences in the melanosome distribution within the epidermal melanin units and its association with the impairing background of leukoderma in vitiligo and halo nevi: a retrospective study. Xiong XX; Ding GZ; Zhao WE; Li X; Ling YT; Sun L; Gong QL; Lu Y Arch Dermatol Res; 2017 Jul; 309(5):323-333. PubMed ID: 28314912 [TBL] [Abstract][Full Text] [Related]
14. Repigmentation through Melanocyte Regeneration in Vitiligo. Birlea SA; Goldstein NB; Norris DA Dermatol Clin; 2017 Apr; 35(2):205-218. PubMed ID: 28317529 [TBL] [Abstract][Full Text] [Related]
15. The melanocytorrhagic hypothesis of vitiligo tested on pigmented, stressed, reconstructed epidermis. Cario-André M; Pain C; Gauthier Y; Taïeb A Pigment Cell Res; 2007 Oct; 20(5):385-93. PubMed ID: 17850512 [TBL] [Abstract][Full Text] [Related]
16. Multimodal analyses of vitiligo skin identify tissue characteristics of stable disease. Shiu J; Zhang L; Lentsch G; Flesher JL; Jin S; Polleys C; Jo SJ; Mizzoni C; Mobasher P; Kwan J; Rius-Diaz F; Tromberg BJ; Georgakoudi I; Nie Q; Balu M; Ganesan AK JCI Insight; 2022 Jul; 7(13):. PubMed ID: 35653192 [TBL] [Abstract][Full Text] [Related]
17. Melanocyte Adhesion and Apoptosis in Vitiligo: Linking Puzzle Blocks. Srivastava N; Gupta S; Parsad D Curr Mol Med; 2023; 23(8):709-711. PubMed ID: 35726816 [TBL] [Abstract][Full Text] [Related]
18. Keratinocytes suppress TRP-1 expression and reduce cell number of co-cultured melanocytes - implications for grafting of patients with vitiligo. Phillips J; Gawkrodger DJ; Caddy CM; Hedley S; Dawson RA; Smith-Thomas L; Freedlander E; Mac Neil S Pigment Cell Res; 2001 Apr; 14(2):116-25. PubMed ID: 11310791 [TBL] [Abstract][Full Text] [Related]
19. The effect of NB-UVB on noncultured melanocyte and keratinocyte transplantation in treatment of generalized vitiligo using two different donor-to-recipient ratios. Tawfik YM; Abd Elazim NE; Abdel-Motaleb AA; Mohammed RAA; Tohamy AMA J Cosmet Dermatol; 2019 Apr; 18(2):638-646. PubMed ID: 30280485 [TBL] [Abstract][Full Text] [Related]
20. Histamine effect on melanocyte proliferation and vitiliginous keratinocyte survival. Kim NH; Lee AY Exp Dermatol; 2010 Dec; 19(12):1073-9. PubMed ID: 21054556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]