These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 37275783)
21. Game-Based Approximate Optimal Motion Planning for Safe Human-Swarm Interaction. Li M; Qin J; Li J; Liu Q; Shi Y; Kang Y IEEE Trans Cybern; 2024 Oct; 54(10):5649-5660. PubMed ID: 38163300 [TBL] [Abstract][Full Text] [Related]
22. A Minimalist Self-Localization Approach for Swarm Robots Based on Active Beacon in Indoor Environments. Duan M; Lei X; Duan Z; Zheng Z Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430840 [TBL] [Abstract][Full Text] [Related]
23. Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots. Duarte M; Costa V; Gomes J; Rodrigues T; Silva F; Oliveira SM; Christensen AL PLoS One; 2016; 11(3):e0151834. PubMed ID: 26999614 [TBL] [Abstract][Full Text] [Related]
24. Autonomous task sequencing in a robot swarm. Garattoni L; Birattari M Sci Robot; 2018 Jul; 3(20):. PubMed ID: 33141726 [TBL] [Abstract][Full Text] [Related]
25. An approach to self-assembling swarm robots using multitree genetic programming. Lee JH; Ahn CW; An J ScientificWorldJournal; 2013; 2013():593848. PubMed ID: 23861655 [TBL] [Abstract][Full Text] [Related]
26. A Framework for Planning and Execution of Drone Swarm Missions in a Hostile Environment. Siemiatkowska B; Stecz W Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34204272 [TBL] [Abstract][Full Text] [Related]
27. Robot swarms neutralize harmful Byzantine robots using a blockchain-based token economy. Strobel V; Pacheco A; Dorigo M Sci Robot; 2023 Jun; 8(79):eabm4636. PubMed ID: 37379373 [TBL] [Abstract][Full Text] [Related]
28. A blockchain-based information market to incentivise cooperation in swarms of self-interested robots. Van Calck L; Pacheco A; Strobel V; Dorigo M; Reina A Sci Rep; 2023 Nov; 13(1):20417. PubMed ID: 37990126 [TBL] [Abstract][Full Text] [Related]
29. Blockchain Technology Secures Robot Swarms: A Comparison of Consensus Protocols and Their Resilience to Byzantine Robots. Strobel V; Castelló Ferrer E; Dorigo M Front Robot AI; 2020; 7():54. PubMed ID: 33501222 [TBL] [Abstract][Full Text] [Related]
30. Morphological computation and decentralized learning in a swarm of sterically interacting robots. Ben Zion MY; Fersula J; Bredeche N; Dauchot O Sci Robot; 2023 Feb; 8(75):eabo6140. PubMed ID: 36812334 [TBL] [Abstract][Full Text] [Related]
31. The k -Unanimity Rule for Self-Organized Decision-Making in Swarms of Robots. Scheidler A; Brutschy A; Ferrante E; Dorigo M IEEE Trans Cybern; 2016 May; 46(5):1175-88. PubMed ID: 27093717 [TBL] [Abstract][Full Text] [Related]
32. Particle Swarm Algorithm Path-Planning Method for Mobile Robots Based on Artificial Potential Fields. Zheng L; Yu W; Li G; Qin G; Luo Y Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447930 [TBL] [Abstract][Full Text] [Related]
33. Resilience evaluation for UAV swarm performing joint reconnaissance mission. Cheng C; Bai G; Zhang YA; Tao J Chaos; 2019 May; 29(5):053132. PubMed ID: 31154766 [TBL] [Abstract][Full Text] [Related]
34. Leader-Based Flocking of Multiple Swarm Robots in Underwater Environments. Kim J Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300030 [TBL] [Abstract][Full Text] [Related]
35. A study of error diversity in robotic swarms for task partitioning in foraging tasks. Buchanan E; Alden K; Pomfret A; Timmis J; Tyrrell AM Front Robot AI; 2022; 9():904341. PubMed ID: 36686209 [TBL] [Abstract][Full Text] [Related]
36. Moving-Distance-Minimized PSO for Mobile Robot Swarm. Zhang J; Lu Y; Che L; Zhou M IEEE Trans Cybern; 2022 Sep; 52(9):9871-9881. PubMed ID: 34437078 [TBL] [Abstract][Full Text] [Related]
37. Modular automatic design of collective behaviors for robots endowed with local communication capabilities. Hasselmann K; Birattari M PeerJ Comput Sci; 2020; 6():e291. PubMed ID: 33816942 [TBL] [Abstract][Full Text] [Related]
38. Multi-Target Coordinated Search Algorithm for Swarm Robotics Considering Practical Constraints. Zhou Y; Chen A; He X; Bian X Front Neurorobot; 2021; 15():753052. PubMed ID: 34938170 [TBL] [Abstract][Full Text] [Related]
39. Exploiting upper-limb functional principal components for human-like motion generation of anthropomorphic robots. Averta G; Della Santina C; Valenza G; Bicchi A; Bianchi M J Neuroeng Rehabil; 2020 May; 17(1):63. PubMed ID: 32404174 [TBL] [Abstract][Full Text] [Related]