BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 37275785)

  • 1. Oxidative phosphorylation in bone cells.
    Sabini E; Arboit L; Khan MP; Lanzolla G; Schipani E
    Bone Rep; 2023 Jun; 18():101688. PubMed ID: 37275785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial respiration supports autophagy to provide stress resistance during quiescence.
    Magalhaes-Novais S; Blecha J; Naraine R; Mikesova J; Abaffy P; Pecinova A; Milosevic M; Bohuslavova R; Prochazka J; Khan S; Novotna E; Sindelka R; Machan R; Dewerchin M; Vlcak E; Kalucka J; Stemberkova Hubackova S; Benda A; Goveia J; Mracek T; Barinka C; Carmeliet P; Neuzil J; Rohlenova K; Rohlena J
    Autophagy; 2022 Oct; 18(10):2409-2426. PubMed ID: 35258392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoblast-like MC3T3-E1 Cells Prefer Glycolysis for ATP Production but Adipocyte-like 3T3-L1 Cells Prefer Oxidative Phosphorylation.
    Guntur AR; Gerencser AA; Le PT; DeMambro VE; Bornstein SA; Mookerjee SA; Maridas DE; Clemmons DE; Brand MD; Rosen CJ
    J Bone Miner Res; 2018 Jun; 33(6):1052-1065. PubMed ID: 29342317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active mitochondria support osteogenic differentiation by stimulating β-catenin acetylation.
    Shares BH; Busch M; White N; Shum L; Eliseev RA
    J Biol Chem; 2018 Oct; 293(41):16019-16027. PubMed ID: 30150300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate.
    Maryanovich M; Zaltsman Y; Ruggiero A; Goldman A; Shachnai L; Zaidman SL; Porat Z; Golan K; Lapidot T; Gross A
    Nat Commun; 2015 Jul; 6():7901. PubMed ID: 26219591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial bioenergetic background confers a survival advantage to HepG2 cells in response to chemotherapy.
    Loiseau D; Morvan D; Chevrollier A; Demidem A; Douay O; Reynier P; Stepien G
    Mol Carcinog; 2009 Aug; 48(8):733-41. PubMed ID: 19347860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial medicine--molecular pathology of defective oxidative phosphorylation.
    Fosslien E
    Ann Clin Lab Sci; 2001 Jan; 31(1):25-67. PubMed ID: 11314862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting OXPHOS and the electron transport chain in cancer; Molecular and therapeutic implications.
    Greene J; Segaran A; Lord S
    Semin Cancer Biol; 2022 Nov; 86(Pt 2):851-859. PubMed ID: 35122973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercomplex supercomplexes: Raison d'etre and functional significance of supramolecular organization in oxidative phosphorylation.
    Nath S
    Biomol Concepts; 2022 May; 13(1):272-288. PubMed ID: 35617665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioenergetic Changes Underline Plasticity of Murine Embryonic Stem Cells.
    Vlaski-Lafarge M; Loncaric D; Perez L; Labat V; Debeissat C; Brunet de la Grange P; Rossignol R; Ivanovic Z; Bœuf H
    Stem Cells; 2019 Apr; 37(4):463-475. PubMed ID: 30599083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mTOR has a developmental stage-specific role in mitochondrial fitness independent of conventional mTORC1 and mTORC2 and the kinase activity.
    Kalim KW; Zhang S; Chen X; Li Y; Yang JQ; Zheng Y; Guo F
    PLoS One; 2017; 12(8):e0183266. PubMed ID: 28813526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Mitochondria-Linked Fatty-Acid Uptake-Driven Adipogenesis in Graves Orbitopathy.
    Zhang L; Rai P; Miwa S; Draman MS; Rees DA; Haridas AS; Morris DS; Tee AR; Ludgate M; Turnbull DM; Dayan CM
    Endocrinology; 2021 Dec; 162(12):. PubMed ID: 34473251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homeostasis of redox status derived from glucose metabolic pathway could be the key to understanding the Warburg effect.
    Zhang S; Yang C; Yang Z; Zhang D; Ma X; Mills G; Liu Z
    Am J Cancer Res; 2015; 5(4):1265-80. PubMed ID: 26101696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homeostasis of redox status derived from glucose metabolic pathway could be the key to understanding the Warburg effect.
    Zhang S; Yang C; Yang Z; Zhang D; Ma X; Mills G; Liu Z
    Am J Cancer Res; 2015; 5(3):928-44. PubMed ID: 26045978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy metabolism in osteoclast formation and activity.
    Lemma S; Sboarina M; Porporato PE; Zini N; Sonveaux P; Di Pompo G; Baldini N; Avnet S
    Int J Biochem Cell Biol; 2016 Oct; 79():168-180. PubMed ID: 27590854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart.
    Pham T; Loiselle D; Power A; Hickey AJ
    Am J Physiol Cell Physiol; 2014 Sep; 307(6):C499-507. PubMed ID: 24920675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligomycin-induced bioenergetic adaptation in cancer cells with heterogeneous bioenergetic organization.
    Hao W; Chang CP; Tsao CC; Xu J
    J Biol Chem; 2010 Apr; 285(17):12647-54. PubMed ID: 20110356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.
    Wu H; Ying M; Hu X
    Oncotarget; 2016 Jun; 7(26):40621-40629. PubMed ID: 27259254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial AIF loss causes metabolic reprogramming, caspase-independent cell death blockade, embryonic lethality, and perinatal hydrocephalus.
    Delavallée L; Mathiah N; Cabon L; Mazeraud A; Brunelle-Navas MN; Lerner LK; Tannoury M; Prola A; Moreno-Loshuertos R; Baritaud M; Vela L; Garbin K; Garnier D; Lemaire C; Langa-Vives F; Cohen-Salmon M; Fernández-Silva P; Chrétien F; Migeotte I; Susin SA
    Mol Metab; 2020 Oct; 40():101027. PubMed ID: 32480041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue.
    Whitaker-Menezes D; Martinez-Outschoorn UE; Flomenberg N; Birbe RC; Witkiewicz AK; Howell A; Pavlides S; Tsirigos A; Ertel A; Pestell RG; Broda P; Minetti C; Lisanti MP; Sotgia F
    Cell Cycle; 2011 Dec; 10(23):4047-64. PubMed ID: 22134189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.