These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37276140)

  • 21. Adaptive Quadruped Balance Control for Dynamic Environments Using Maximum-Entropy Reinforcement Learning.
    Sun H; Fu T; Ling Y; He C
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IHG-MA: Inductive heterogeneous graph multi-agent reinforcement learning for multi-intersection traffic signal control.
    Yang S; Yang B; Kang Z; Deng L
    Neural Netw; 2021 Jul; 139():265-277. PubMed ID: 33838602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Actor-Critic Learning Control With Regularization and Feature Selection in Policy Gradient Estimation.
    Li L; Li D; Song T; Xu X
    IEEE Trans Neural Netw Learn Syst; 2021 Mar; 32(3):1217-1227. PubMed ID: 32324571
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BGRL: Basal Ganglia inspired Reinforcement Learning based framework for deep brain stimulators.
    Agarwal H; Rathore H
    Artif Intell Med; 2024 Jan; 147():102736. PubMed ID: 38184360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient Actor-Critic Reinforcement Learning With Embodiment of Muscle Tone for Posture Stabilization of the Human Arm.
    Iwamoto M; Kato D
    Neural Comput; 2021 Jan; 33(1):129-156. PubMed ID: 33080164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep Multi-Critic Network for accelerating Policy Learning in multi-agent environments.
    Hook J; Silva V; Kondoz A
    Neural Netw; 2020 Aug; 128():97-106. PubMed ID: 32446194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence.
    Gold JM; Waltz JA; Matveeva TM; Kasanova Z; Strauss GP; Herbener ES; Collins AG; Frank MJ
    Arch Gen Psychiatry; 2012 Feb; 69(2):129-38. PubMed ID: 22310503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-agent reinforcement learning with approximate model learning for competitive games.
    Park YJ; Cho YS; Kim SB
    PLoS One; 2019; 14(9):e0222215. PubMed ID: 31509568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method.
    Golkhou V; Parnianpour M; Lucas C
    Comput Methods Biomech Biomed Engin; 2005 Apr; 8(2):103-13. PubMed ID: 16154874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Episodic memory governs choices: An RNN-based reinforcement learning model for decision-making task.
    Zhang X; Liu L; Long G; Jiang J; Liu S
    Neural Netw; 2021 Feb; 134():1-10. PubMed ID: 33276194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterizing Motor Control of Mastication With Soft Actor-Critic.
    Abdi AH; Sagl B; Srungarapu VP; Stavness I; Prisman E; Abolmaesumi P; Fels S
    Front Hum Neurosci; 2020; 14():188. PubMed ID: 32528267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous action deep reinforcement learning for propofol dosing during general anesthesia.
    Schamberg G; Badgeley M; Meschede-Krasa B; Kwon O; Brown EN
    Artif Intell Med; 2022 Jan; 123():102227. PubMed ID: 34998516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Black-box attacks on dynamic graphs via adversarial topology perturbations.
    Tao H; Cao J; Chen L; Sun H; Shi Y; Zhu X
    Neural Netw; 2024 Mar; 171():308-319. PubMed ID: 38104509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces.
    Prins NW; Sanchez JC; Prasad A
    Front Neurosci; 2014; 8():111. PubMed ID: 24904257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Credit assignment with predictive contribution measurement in multi-agent reinforcement learning.
    Chen R; Tan Y
    Neural Netw; 2023 Jul; 164():681-690. PubMed ID: 37257392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Learning and forgetting using reinforced Bayesian change detection.
    Moens V; ZĂ©non A
    PLoS Comput Biol; 2019 Apr; 15(4):e1006713. PubMed ID: 30995214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reinforcement learning in continuous time and space.
    Doya K
    Neural Comput; 2000 Jan; 12(1):219-45. PubMed ID: 10636940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Policy-Gradient and Actor-Critic Based State Representation Learning for Safe Driving of Autonomous Vehicles.
    Gupta A; Khwaja AS; Anpalagan A; Guan L; Venkatesh B
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Realistic Actor-Critic: A framework for balance between value overestimation and underestimation.
    Li S; Tang Q; Pang Y; Ma X; Wang G
    Front Neurorobot; 2022; 16():1081242. PubMed ID: 36699950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.