These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37276140)

  • 41. Distributional Soft Actor-Critic: Off-Policy Reinforcement Learning for Addressing Value Estimation Errors.
    Duan J; Guan Y; Li SE; Ren Y; Sun Q; Cheng B
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6584-6598. PubMed ID: 34101599
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Attention-Shared Multi-Agent Actor-Critic-Based Deep Reinforcement Learning Approach for Mobile Charging Dynamic Scheduling in Wireless Rechargeable Sensor Networks.
    Jiang C; Wang Z; Chen S; Li J; Wang H; Xiang J; Xiao W
    Entropy (Basel); 2022 Jul; 24(7):. PubMed ID: 35885188
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Off-Policy Reinforcement Learning for Synchronization in Multiagent Graphical Games.
    Li J; Modares H; Chai T; Lewis FL; Xie L
    IEEE Trans Neural Netw Learn Syst; 2017 Oct; 28(10):2434-2445. PubMed ID: 28436891
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adaptive Control for Virtual Synchronous Generator Parameters Based on Soft Actor Critic.
    Lu C; Zhuan X
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610247
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Human dorsal striatal activity during choice discriminates reinforcement learning behavior from the gambler's fallacy.
    Jessup RK; O'Doherty JP
    J Neurosci; 2011 Apr; 31(17):6296-304. PubMed ID: 21525269
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Brain signals of a Surprise-Actor-Critic model: Evidence for multiple learning modules in human decision making.
    Liakoni V; Lehmann MP; Modirshanechi A; Brea J; Lutti A; Gerstner W; Preuschoff K
    Neuroimage; 2022 Feb; 246():118780. PubMed ID: 34875383
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Behavior fusion for deep reinforcement learning.
    Shi H; Xu M; Hwang KS; Cai BY
    ISA Trans; 2020 Mar; 98():434-444. PubMed ID: 31543262
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SMONAC: Supervised Multiobjective Negative Actor-Critic for Sequential Recommendation.
    Zhou F; Luo B; Wu Z; Huang T
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; PP():. PubMed ID: 37788188
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combining Reinforcement Learning and Tensor Networks, with an Application to Dynamical Large Deviations.
    Gillman E; Rose DC; Garrahan JP
    Phys Rev Lett; 2024 May; 132(19):197301. PubMed ID: 38804929
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Relative Entropy Regularized Sample-Efficient Reinforcement Learning With Continuous Actions.
    Shang Z; Li R; Zheng C; Li H; Cui Y
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; PP():. PubMed ID: 37943648
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Curiosity-driven recommendation strategy for adaptive learning via deep reinforcement learning.
    Han R; Chen K; Tan C
    Br J Math Stat Psychol; 2020 Nov; 73(3):522-540. PubMed ID: 32080828
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Learn Quasi-Stationary Distributions of Finite State Markov Chain.
    Cai Z; Lin L; Zhou X
    Entropy (Basel); 2022 Jan; 24(1):. PubMed ID: 35052159
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combining backpropagation with Equilibrium Propagation to improve an Actor-Critic reinforcement learning framework.
    Kubo Y; Chalmers E; Luczak A
    Front Comput Neurosci; 2022; 16():980613. PubMed ID: 36082305
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reinforcement Learning for Improving Agent Design.
    Ha D
    Artif Life; 2019; 25(4):352-365. PubMed ID: 31697584
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Actor-Critic Learning Control Based on -Regularized Temporal-Difference Prediction With Gradient Correction.
    Li L; Li D; Song T; Xu X
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):5899-5909. PubMed ID: 29993664
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular Design Method Using a Reversible Tree Representation of Chemical Compounds and Deep Reinforcement Learning.
    Ishitani R; Kataoka T; Rikimaru K
    J Chem Inf Model; 2022 Sep; 62(17):4032-4048. PubMed ID: 35960209
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A unified framework to control estimation error in reinforcement learning.
    Zhang Y; Li L; Wei W; Lv Y; Liang J
    Neural Netw; 2024 Oct; 178():106483. PubMed ID: 38954893
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Asynchronous learning for actor-critic neural networks and synchronous triggering for multiplayer system.
    Wang K; Mu C
    ISA Trans; 2022 Oct; 129(Pt B):295-308. PubMed ID: 35216805
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive.
    Collins AG; Frank MJ
    Psychol Rev; 2014 Jul; 121(3):337-66. PubMed ID: 25090423
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins N; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4108-11. PubMed ID: 23366831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.