BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37276178)

  • 1. DeepIFC: Virtual fluorescent labeling of blood cells in imaging flow cytometry data with deep learning.
    Timonen VA; Kerkelä E; Impola U; Penna L; Partanen J; Kilpivaara O; Arvas M; Pitkänen E
    Cytometry A; 2023 Oct; 103(10):807-817. PubMed ID: 37276178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of Human White Blood Cells Using Machine Learning for Stain-Free Imaging Flow Cytometry.
    Lippeveld M; Knill C; Ladlow E; Fuller A; Michaelis LJ; Saeys Y; Filby A; Peralta D
    Cytometry A; 2020 Mar; 97(3):308-319. PubMed ID: 31688997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free cell cycle analysis for high-throughput imaging flow cytometry.
    Blasi T; Hennig H; Summers HD; Theis FJ; Cerveira J; Patterson JO; Davies D; Filby A; Carpenter AE; Rees P
    Nat Commun; 2016 Jan; 7():10256. PubMed ID: 26739115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting single-cell gene expression profiles of imaging flow cytometry data with machine learning.
    Chlis NK; Rausch L; Brocker T; Kranich J; Theis FJ
    Nucleic Acids Res; 2020 Nov; 48(20):11335-11346. PubMed ID: 33119742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A weakly supervised deep learning approach for label-free imaging flow-cytometry-based blood diagnostics.
    Otesteanu CF; Ugrinic M; Holzner G; Chang YT; Fassnacht C; Guenova E; Stavrakis S; deMello A; Claassen M
    Cell Rep Methods; 2021 Oct; 1(6):100094. PubMed ID: 35474892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpretable unsupervised learning enables accurate clustering with high-throughput imaging flow cytometry.
    Zhang Z; Chen X; Tang R; Zhu Y; Guo H; Qu Y; Xie P; Lian IY; Wang Y; Lo YH
    Sci Rep; 2023 Nov; 13(1):20533. PubMed ID: 37996496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.
    Hennig H; Rees P; Blasi T; Kamentsky L; Hung J; Dao D; Carpenter AE; Filby A
    Methods; 2017 Jan; 112():201-210. PubMed ID: 27594698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time fluorescence imaging flow cytometry enabled by motion deblurring and deep learning algorithms.
    Wang Y; Huang Z; Wang X; Yang F; Yao X; Pan T; Li B; Chu J
    Lab Chip; 2023 Aug; 23(16):3615-3627. PubMed ID: 37458395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing architectural order with quantitative label-free imaging and deep learning.
    Guo SM; Yeh LH; Folkesson J; Ivanov IE; Krishnan AP; Keefe MG; Hashemi E; Shin D; Chhun BB; Cho NH; Leonetti MD; Han MH; Nowakowski TJ; Mehta SB
    Elife; 2020 Jul; 9():. PubMed ID: 32716843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico-labeled ghost cytometry.
    Ugawa M; Kawamura Y; Toda K; Teranishi K; Morita H; Adachi H; Tamoto R; Nomaru H; Nakagawa K; Sugimoto K; Borisova E; An Y; Konishi Y; Tabata S; Morishita S; Imai M; Takaku T; Araki M; Komatsu N; Hayashi Y; Sato I; Horisaki R; Noji H; Ota S
    Elife; 2021 Dec; 10():. PubMed ID: 34930522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Cytometry: Deep learning with Real-time Inference in Cell Sorting and Flow Cytometry.
    Li Y; Mahjoubfar A; Chen CL; Niazi KR; Pei L; Jalali B
    Sci Rep; 2019 Jul; 9(1):11088. PubMed ID: 31366998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-content video flow cytometry with digital cell filtering for label-free cell classification by machine learning.
    Liu C; Wang Z; Jia J; Liu Q; Su X
    Cytometry A; 2023 Apr; 103(4):325-334. PubMed ID: 36287146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating Very Deep Convolutional Neural Networks for Nucleus Segmentation from Brightfield Cell Microscopy Images.
    Ali MAS; Misko O; Salumaa SO; Papkov M; Palo K; Fishman D; Parts L
    SLAS Discov; 2021 Oct; 26(9):1125-1137. PubMed ID: 34167359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multispectral imaging of hematopoietic cells: where flow meets morphology.
    McGrath KE; Bushnell TP; Palis J
    J Immunol Methods; 2008 Jul; 336(2):91-7. PubMed ID: 18539294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning to see colours: Biologically relevant virtual staining for adipocyte cell images.
    Wieslander H; Gupta A; Bergman E; Hallström E; Harrison PJ
    PLoS One; 2021; 16(10):e0258546. PubMed ID: 34653209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging flow cytometry: coping with heterogeneity in biological systems.
    Barteneva NS; Fasler-Kan E; Vorobjev IA
    J Histochem Cytochem; 2012 Oct; 60(10):723-33. PubMed ID: 22740345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free prediction of cell painting from brightfield images.
    Cross-Zamirski JO; Mouchet E; Williams G; Schönlieb CB; Turkki R; Wang Y
    Sci Rep; 2022 Jun; 12(1):10001. PubMed ID: 35705591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PXPermute reveals staining importance in multichannel imaging flow cytometry.
    Shetab Boushehri S; Kornivetc A; Winter DJE; Kazeminia S; Essig K; Schmich F; Marr C
    Cell Rep Methods; 2024 Feb; 4(2):100715. PubMed ID: 38412831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep imaging flow cytometry.
    Huang K; Matsumura H; Zhao Y; Herbig M; Yuan D; Mineharu Y; Harmon J; Findinier J; Yamagishi M; Ohnuki S; Nitta N; Grossman AR; Ohya Y; Mikami H; Isozaki A; Goda K
    Lab Chip; 2022 Mar; 22(5):876-889. PubMed ID: 35142325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput label-free detection of DNA-to-RNA transcription inhibition using brightfield microscopy and deep neural networks.
    Sauvat A; Cerrato G; Humeau J; Leduc M; Kepp O; Kroemer G
    Comput Biol Med; 2021 Jun; 133():104371. PubMed ID: 33845268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.