These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37276358)

  • 41. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities.
    Crosas B; Hanna J; Kirkpatrick DS; Zhang DP; Tone Y; Hathaway NA; Buecker C; Leggett DS; Schmidt M; King RW; Gygi SP; Finley D
    Cell; 2006 Dec; 127(7):1401-13. PubMed ID: 17190603
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ubiquitin-dependent mitochondrial protein degradation.
    Heo JM; Rutter J
    Int J Biochem Cell Biol; 2011 Oct; 43(10):1422-6. PubMed ID: 21683801
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mitochondrial ClpP-Mediated Proteolysis Induces Selective Cancer Cell Lethality.
    Ishizawa J; Zarabi SF; Davis RE; Halgas O; Nii T; Jitkova Y; Zhao R; St-Germain J; Heese LE; Egan G; Ruvolo VR; Barghout SH; Nishida Y; Hurren R; Ma W; Gronda M; Link T; Wong K; Mabanglo M; Kojima K; Borthakur G; MacLean N; Ma MCJ; Leber AB; Minden MD; Houry W; Kantarjian H; Stogniew M; Raught B; Pai EF; Schimmer AD; Andreeff M
    Cancer Cell; 2019 May; 35(5):721-737.e9. PubMed ID: 31056398
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Qualitative difference of mitochondrial subproteoms of brain RPN10- and RPN13-binding proteins].
    Buneeva OA; Kopylov AT; Medvedev AE
    Biomed Khim; 2020 Feb; 66(2):138-144. PubMed ID: 32420894
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mitochondrial Caseinolytic Protease P: A Possible Novel Prognostic Marker and Therapeutic Target in Cancer.
    Cormio A; Sanguedolce F; Pesce V; Musicco C
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34207660
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The regulation of mitochondrial homeostasis by the ubiquitin proteasome system.
    Alsayyah C; Ozturk O; Cavellini L; Belgareh-Touzé N; Cohen MM
    Biochim Biophys Acta Bioenerg; 2020 Dec; 1861(12):148302. PubMed ID: 32861697
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PROTACs: An Emerging Therapeutic Modality in Precision Medicine.
    Nalawansha DA; Crews CM
    Cell Chem Biol; 2020 Aug; 27(8):998-1014. PubMed ID: 32795419
    [TBL] [Abstract][Full Text] [Related]  

  • 48. PROTAC-induced proteolytic targeting.
    Carmony KC; Kim KB
    Methods Mol Biol; 2012; 832():627-38. PubMed ID: 22350917
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells.
    Ryhänen T; Hyttinen JM; Kopitz J; Rilla K; Kuusisto E; Mannermaa E; Viiri J; Holmberg CI; Immonen I; Meri S; Parkkinen J; Eskelinen EL; Uusitalo H; Salminen A; Kaarniranta K
    J Cell Mol Med; 2009 Sep; 13(9B):3616-31. PubMed ID: 19017362
    [TBL] [Abstract][Full Text] [Related]  

  • 50. TIPI: TEV protease-mediated induction of protein instability.
    Taxis C; Knop M
    Methods Mol Biol; 2012; 832():611-26. PubMed ID: 22350916
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proteasomal and lysosomal protein degradation and heart disease.
    Wang X; Robbins J
    J Mol Cell Cardiol; 2014 Jun; 71():16-24. PubMed ID: 24239609
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characteristics of the turnover of uncoupling protein 3 by the ubiquitin proteasome system in isolated mitochondria.
    Mookerjee SA; Brand MD
    Biochim Biophys Acta; 2011 Nov; 1807(11):1474-81. PubMed ID: 21820402
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Progress on small-molecule proteolysis-targeting chimeras.
    Huang W; Wang B; Zhang Z; Zhang C; Zeng S; Shen Z
    Future Med Chem; 2019 Oct; 11(20):2715-2734. PubMed ID: 31571504
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion.
    Cohen MM; Leboucher GP; Livnat-Levanon N; Glickman MH; Weissman AM
    Mol Biol Cell; 2008 Jun; 19(6):2457-64. PubMed ID: 18353967
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The deubiquitinating enzyme Usp14 allosterically inhibits multiple proteasomal activities and ubiquitin-independent proteolysis.
    Kim HT; Goldberg AL
    J Biol Chem; 2017 Jun; 292(23):9830-9839. PubMed ID: 28416611
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proteolysis-targeting chimeras (PROTACs) in cancer therapy.
    Li X; Pu W; Zheng Q; Ai M; Chen S; Peng Y
    Mol Cancer; 2022 Apr; 21(1):99. PubMed ID: 35410300
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1.
    Escobar-Henriques M; Westermann B; Langer T
    J Cell Biol; 2006 Jun; 173(5):645-50. PubMed ID: 16735578
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Proteasomes. Complex proteases lead to a new understanding of cellular regulation through proteolysis].
    Hilt W; Wolf DH
    Naturwissenschaften; 1995 Jun; 82(6):257-68. PubMed ID: 7643904
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Frontiers in PROTACs.
    Hughes GR; Dudey AP; Hemmings AM; Chantry A
    Drug Discov Today; 2021 Oct; 26(10):2377-2383. PubMed ID: 33872800
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome.
    Guterman A; Glickman MH
    J Biol Chem; 2004 Jan; 279(3):1729-38. PubMed ID: 14581483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.