These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 37276379)
1. UHPLC-Q-Orbitrap HR-MS-Based Metabolomics for Profiling the Sida rhombifolia Metabolites with Different Plant Organs and Cultivation Ages. Silviani D; Zam Astari S; Anggraini Septianingsih D; Hudatul Karomah A; Ilmiawati A; Dyah Syafitri U; Tri Wahyuni W; Siti Aminah N; Insanu M; Rohman A; Rafi M Chem Biodivers; 2023 Jun; 20(6):e202201042. PubMed ID: 37276379 [TBL] [Abstract][Full Text] [Related]
2. Untargeted metabolomics using UHPLC-Q-Orbitrap HRMS for identifying cytotoxic compounds on MCF-7 breast cancer cells from Annona muricata Linn leaf extracts as potential anticancer agents. Septaningsih DA; Suparto IH; Achmadi SS; Heryanto R; Rafi M Phytochem Anal; 2024 Aug; 35(6):1418-1427. PubMed ID: 38708435 [TBL] [Abstract][Full Text] [Related]
3. Exploring the metabolomic diversity of plant species across spatial (leaf and stem) components and phylogenic groups. Lee S; Oh DG; Singh D; Lee JS; Lee S; Lee CH BMC Plant Biol; 2020 Jan; 20(1):39. PubMed ID: 31992195 [TBL] [Abstract][Full Text] [Related]
4. Metabolite profiling of Rafi M; Karomah AH; Heryanto R; Septaningsih DA; Kusuma WA; Amran MB; Rohman A; Prajogo B Nat Prod Res; 2022 Jan; 36(2):625-629. PubMed ID: 32657134 [No Abstract] [Full Text] [Related]
5. Region identification of Xinyang Maojian tea using UHPLC-Q-TOF/MS-based metabolomics coupled with multivariate statistical analyses. Wang Z; Ma B; Ma C; Zheng C; Zhou B; Guo G; Xia T J Food Sci; 2021 May; 86(5):1681-1691. PubMed ID: 33798265 [TBL] [Abstract][Full Text] [Related]
6. Nontargeted metabolomics approach for the differentiation of cultivation ages of mountain cultivated ginseng leaves using UHPLC/QTOF-MS. Chang X; Zhang J; Li D; Zhou D; Zhang Y; Wang J; Hu B; Ju A; Ye Z J Pharm Biomed Anal; 2017 Jul; 141():108-122. PubMed ID: 28437718 [TBL] [Abstract][Full Text] [Related]
7. A Comparative UHPLC-Q-Trap-MS/MS-Based Metabolomics Analysis to Distinguish Crescenzi MA; D'Urso G; Piacente S; Montoro P Molecules; 2023 Jan; 28(2):. PubMed ID: 36677955 [TBL] [Abstract][Full Text] [Related]
8. Metabolic and elemental profiling as potential discriminating features among the black mahlab seeds (Monechma ciliatum) grown in three different regions. Mariod AA; Tahir HE Phytochem Anal; 2024 Jul; 35(5):1063-1071. PubMed ID: 38431984 [TBL] [Abstract][Full Text] [Related]
9. LC-MS untargeted metabolomics assesses the delayed response of glufosinate treatment of transgenic glufosinate resistant (GR) buffalo grasses (Stenotaphrum secundatum L.). Boonchaisri S; Rochfort S; Stevenson T; Dias DA Metabolomics; 2021 Feb; 17(3):28. PubMed ID: 33609206 [TBL] [Abstract][Full Text] [Related]
10. In-depth profiling, characterization, and comparison of the ginsenosides among three different parts (the root, stem leaf, and flower bud) of Panax quinquefolius L. by ultra-high performance liquid chromatography/quadrupole-Orbitrap mass spectrometry. Wang H; Zhang C; Zuo T; Li W; Jia L; Wang X; Qian Y; Guo D; Yang W Anal Bioanal Chem; 2019 Nov; 411(29):7817-7829. PubMed ID: 31729585 [TBL] [Abstract][Full Text] [Related]
11. Strategy for Screening of Antioxidant Compounds from Two Ulmaceae Species Based on Liquid Chromatography-Mass Spectrometry. Won JY; Son SY; Lee S; Singh D; Lee S; Lee JS; Lee CH Molecules; 2018 Jul; 23(7):. PubMed ID: 30041442 [TBL] [Abstract][Full Text] [Related]
13. Ultra-high-performance liquid chromatography-tandem high-resolution elevated mass spectrometry profiling of anti-methicillin-resistant Staphylococcus aureus metabolites from the endophytic bacteria collected from the weeds of a previous dumpsite. Lacson MLB; Arbotante CA; Magdayao MJTE; Bundalian RD; Anas ARJ J Chromatogr A; 2023 Sep; 1706():464228. PubMed ID: 37556933 [TBL] [Abstract][Full Text] [Related]
14. An integrated chemical characterization based on FT-NIR, GC-MS and LC-MS for the comparative metabolite profiling of wild and cultivated agarwood. Yao C; Qi L; Zhong F; Li N; Ma Y J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Jan; 1188():123056. PubMed ID: 34871920 [TBL] [Abstract][Full Text] [Related]
15. Untargeted Metabolomics Analysis Using FTIR and LC-HRMS for Differentiating Sonchus arvensis Plant Parts and Evaluating Their Biological Activity. Maslahat M; Mardinata D; Surur SM; Lioe HN; Syafitri UD; Rafi M; Rohaeti E Chem Biodivers; 2024 Oct; ():e202401537. PubMed ID: 39385708 [TBL] [Abstract][Full Text] [Related]
17. Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC-q-TOF-MS and chemometrics. Farag MA; El-Ahmady SH; Elian FS; Wessjohann LA Phytochemistry; 2013 Nov; 95():177-87. PubMed ID: 23902683 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of in vitro antioxidant activity of Sida rhombifolia (L.) ssp. retusa (L.). Dhalwal K; Deshpande YS; Purohit AP J Med Food; 2007 Dec; 10(4):683-8. PubMed ID: 18158841 [TBL] [Abstract][Full Text] [Related]
19. Pseudotargeted metabolomics method and its application in serum biomarker discovery for hepatocellular carcinoma based on ultra high-performance liquid chromatography/triple quadrupole mass spectrometry. Chen S; Kong H; Lu X; Li Y; Yin P; Zeng Z; Xu G Anal Chem; 2013 Sep; 85(17):8326-33. PubMed ID: 23889541 [TBL] [Abstract][Full Text] [Related]
20. Molecular networking and collision cross section prediction for structural isomer and unknown compound identification in plant metabolomics: a case study applied to Zhanthoxylum heitzii extracts. Calabrese V; Schmitz-Afonso I; Prevost C; Afonso C; Elomri A Anal Bioanal Chem; 2022 Jun; 414(14):4103-4118. PubMed ID: 35419692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]