These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37276556)

  • 1. Tiered synchronization in Kuramoto oscillators with adaptive higher-order interactions.
    Rajwani P; Suman A; Jalan S
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37276556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronization transitions in adaptive Kuramoto-Sakaguchi oscillators with higher-order interactions.
    Sharma A; Rajwani P; Jalan S
    Chaos; 2024 Aug; 34(8):. PubMed ID: 39213012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase transitions in an adaptive network with the global order parameter adaptation.
    Manoranjani M; Saiprasad VR; Gopal R; Senthilkumar DV; Chandrasekar VK
    Phys Rev E; 2023 Oct; 108(4-1):044307. PubMed ID: 37978685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of higher-order interactions on chimera states in two populations of Kuramoto oscillators.
    Kar R; Yadav A; Chandrasekar VK; Senthilkumar DV
    Chaos; 2024 Feb; 34(2):. PubMed ID: 38363957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifurcations in the Kuramoto model on graphs.
    Chiba H; Medvedev GS; Mizuhara MS
    Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotating clusters in phase-lagged Kuramoto oscillators with higher-order interactions.
    Moyal B; Rajwani P; Dutta S; Jalan S
    Phys Rev E; 2024 Mar; 109(3-1):034211. PubMed ID: 38632814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of phase lag on synchronization in frustrated Kuramoto model with higher-order interactions.
    Dutta S; Mondal A; Kundu P; Khanra P; Pal P; Hens C
    Phys Rev E; 2023 Sep; 108(3-1):034208. PubMed ID: 37849147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability.
    Zou W; Wang J
    Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple first-order transitions in simplicial complexes on multilayer systems.
    Jalan S; Suman A
    Phys Rev E; 2022 Oct; 106(4-1):044304. PubMed ID: 36397568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of adaptation functions and multilayer topology on synchronization.
    Biswas D; Gupta S
    Phys Rev E; 2024 Feb; 109(2-1):024221. PubMed ID: 38491636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix coupling and generalized frustration in Kuramoto oscillators.
    Buzanello GL; Barioni AED; de Aguiar MAM
    Chaos; 2022 Sep; 32(9):093130. PubMed ID: 36182358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model.
    Omel'chenko OE; Wolfrum M
    Phys Rev Lett; 2012 Oct; 109(16):164101. PubMed ID: 23215080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tiered synchronization in coupled oscillator populations with interaction delays and higher-order interactions.
    Skardal PS; Xu C
    Chaos; 2022 May; 32(5):053120. PubMed ID: 35649978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperative dynamics in coupled systems of fast and slow phase oscillators.
    Sakaguchi H; Okita T
    Phys Rev E; 2016 Feb; 93(2):022212. PubMed ID: 26986336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization onset for contrarians with higher-order interactions in multilayer systems.
    Rathore V; Suman A; Jalan S
    Chaos; 2023 Sep; 33(9):. PubMed ID: 37729103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher-order interactions in Kuramoto oscillators with inertia.
    Jaros P; Ghosh S; Dudkowski D; Dana SK; Kapitaniak T
    Phys Rev E; 2023 Aug; 108(2-1):024215. PubMed ID: 37723775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronization transitions in phase oscillator populations with partial adaptive coupling.
    Chen Z; Zheng Z; Xu C
    Chaos; 2024 Jun; 34(6):. PubMed ID: 38829794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering and Bellerophon state in Kuramoto model with second-order coupling.
    Li X; Zhang J; Zou Y; Guan S
    Chaos; 2019 Apr; 29(4):043102. PubMed ID: 31042952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators.
    Papadopoulos L; Kim JZ; Kurths J; Bassett DS
    Chaos; 2017 Jul; 27(7):073115. PubMed ID: 28764402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization transitions and sensitivity to asymmetry in the bimodal Kuramoto systems with Cauchy noise.
    Kostin VA; Munyaev VO; Osipov GV; Smirnov LA
    Chaos; 2023 Aug; 33(8):. PubMed ID: 38060795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.