These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37276556)

  • 21. Stability and bifurcation of collective dynamics in phase oscillator populations with general coupling.
    Xu C; Wang X; Zheng Z; Cai Z
    Phys Rev E; 2021 Mar; 103(3-1):032307. PubMed ID: 33862749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcritical riddling in a system of coupled maps.
    Popovych O; Maistrenko Y; Mosekilde E; Pikovsky A; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036201. PubMed ID: 11308735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synchronization Transition of the Second-Order Kuramoto Model on Lattices.
    Ódor G; Deng S
    Entropy (Basel); 2023 Jan; 25(1):. PubMed ID: 36673304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peculiarities of the transitions to synchronization in coupled systems with amplitude death.
    Astakhov V; Koblyanskii S; Shabunin A; Kapitaniak T
    Chaos; 2011 Jun; 21(2):023127. PubMed ID: 21721769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ott-Antonsen ansatz for the D-dimensional Kuramoto model: A constructive approach.
    Barioni AED; de Aguiar MAM
    Chaos; 2021 Nov; 31(11):113141. PubMed ID: 34881619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach.
    Pinto RS; Saa A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062801. PubMed ID: 26764738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The study of the dynamics of the order parameter of coupled oscillators in the Ott-Antonsen scheme for generic frequency distributions.
    Campa A
    Chaos; 2022 Aug; 32(8):083104. PubMed ID: 36049926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of asymmetric parameters in higher-order coupling with bimodal frequency distribution.
    Manoranjani M; Gopal R; Senthilkumar DV; Chandrasekar VK; Lakshmanan M
    Phys Rev E; 2022 Mar; 105(3-1):034307. PubMed ID: 35428136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of phase-dependent influence function in the Winfree model of coupled oscillators.
    Manoranjani M; Gopal R; Senthilkumar DV; Chandrasekar VK
    Phys Rev E; 2021 Dec; 104(6-1):064206. PubMed ID: 35030866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mean-field behavior in coupled oscillators with attractive and repulsive interactions.
    Hong H; Strogatz SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056210. PubMed ID: 23004846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency and phase synchronization in large groups: Low dimensional description of synchronized clapping, firefly flashing, and cricket chirping.
    Ott E; Antonsen TM
    Chaos; 2017 May; 27(5):051101. PubMed ID: 28576094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling.
    Wu H; Kang L; Liu Z; Dhamala M
    Sci Rep; 2018 Oct; 8(1):15521. PubMed ID: 30341395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of asymmetry on the loss of chaos synchronization.
    Kim SY; Lim W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016211. PubMed ID: 11461371
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hysteresis and synchronization processes of Kuramoto oscillators on high-dimensional simplicial complexes with competing simplex-encoded couplings.
    Chutani M; Tadić B; Gupte N
    Phys Rev E; 2021 Sep; 104(3-1):034206. PubMed ID: 34654179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. First-order route to antiphase clustering in adaptive simplicial complexes.
    Kachhvah AD; Jalan S
    Phys Rev E; 2022 Jun; 105(6):L062203. PubMed ID: 35854537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synchronization transitions in Kuramoto networks with higher-mode interaction.
    Berner R; Lu A; Sokolov IM
    Chaos; 2023 Jul; 33(7):. PubMed ID: 37463093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformists and contrarians in a Kuramoto model with identical natural frequencies.
    Hong H; Strogatz SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046202. PubMed ID: 22181240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Criterion for the emergence of explosive synchronization transitions in networks of phase oscillators.
    Zhu L; Tian L; Shi D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042921. PubMed ID: 24229263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of Noisy Oscillator Populations beyond the Ott-Antonsen Ansatz.
    Tyulkina IV; Goldobin DS; Klimenko LS; Pikovsky A
    Phys Rev Lett; 2018 Jun; 120(26):264101. PubMed ID: 30004770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiscale dynamics in communities of phase oscillators.
    Anderson D; Tenzer A; Barlev G; Girvan M; Antonsen TM; Ott E
    Chaos; 2012 Mar; 22(1):013102. PubMed ID: 22462978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.