These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 37276587)
41. Characterization of a Modulated X-ray Source for Ion Mobility Spectrometry. Reinecke T; Kenyon S; Gendreau K; Clowers BH Anal Chem; 2022 Sep; 94(35):12008-12015. PubMed ID: 36001409 [TBL] [Abstract][Full Text] [Related]
42. Pursuing drug laboratories: Analysis of drug precursors with High Kinetic Energy Ion Mobility Spectrometry. Schaefer C; Lippmann M; Schindler C; Beukers M; Beijer N; Hitzemann M; van de Kamp B; Peters R; Knotter J; Zimmermann S Forensic Sci Int; 2024 Oct; 363():112196. PubMed ID: 39151243 [TBL] [Abstract][Full Text] [Related]
43. Development of an Ion Mobility Spectrometry-Orbitrap Mass Spectrometer Platform. Ibrahim YM; Garimella SV; Prost SA; Wojcik R; Norheim RV; Baker ES; Rusyn I; Smith RD Anal Chem; 2016 Dec; 88(24):12152-12160. PubMed ID: 28193022 [TBL] [Abstract][Full Text] [Related]
45. Coupling of a High-Resolution Ambient Pressure Drift Tube Ion Mobility Spectrometer to a Commercial Time-of-flight Mass Spectrometer. Allers M; Timoumi L; Kirk AT; Schlottmann F; Zimmermann S J Am Soc Mass Spectrom; 2018 Nov; 29(11):2208-2217. PubMed ID: 30105740 [TBL] [Abstract][Full Text] [Related]
46. Ambient Pressure Inverse Ion Mobility Spectrometry Coupled to Mass Spectrometry. Liu W; Davis AL; Siems WF; Yin D; Clowers BH; Hill HH Anal Chem; 2017 Mar; 89(5):2800-2806. PubMed ID: 28192980 [TBL] [Abstract][Full Text] [Related]
47. Fundamental study of ion trapping and multiplexing using drift tube-ion mobility time-of-flight mass spectrometry for non-targeted metabolomics. Causon TJ; Si-Hung L; Newton K; Kurulugama RT; Fjeldsted J; Hann S Anal Bioanal Chem; 2019 Sep; 411(24):6265-6274. PubMed ID: 31302708 [TBL] [Abstract][Full Text] [Related]
48. Considerations for Generating Frequency Modulation Waveforms for Fourier Transform-Ion Mobility Experiments. Cabrera ER; Clowers BH J Am Soc Mass Spectrom; 2022 Oct; 33(10):1858-1864. PubMed ID: 36066398 [TBL] [Abstract][Full Text] [Related]
49. Coupling of capillary electrophoresis with electrospray ionization multiplexing ion mobility spectrometry. Guo J; Li G; Zhang H; Jia X; Meng Q; Liu W Electrophoresis; 2019 Jul; 40(12-13):1639-1647. PubMed ID: 30892711 [TBL] [Abstract][Full Text] [Related]
50. Gated Trapped Ion Mobility Spectrometry Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Ridgeway ME; Wolff JJ; Silveira JA; Lin C; Costello CE; Park MA Int J Ion Mobil Spectrom; 2016 Sep; 19(2):77-85. PubMed ID: 27667964 [TBL] [Abstract][Full Text] [Related]
51. Determination of residence times of ions in a resistive glass selected ion flow-drift tube using the Hadamard transformation. Spesyvyi A; Španěl P Rapid Commun Mass Spectrom; 2015 Sep; 29(17):1563-1570. PubMed ID: 28339157 [TBL] [Abstract][Full Text] [Related]
52. High-Resolution High Kinetic Energy Ion Mobility Spectrometer Based on a Low-Discrimination Tristate Ion Shutter. Kirk AT; Grube D; Kobelt T; Wendt C; Zimmermann S Anal Chem; 2018 May; 90(9):5603-5611. PubMed ID: 29624371 [TBL] [Abstract][Full Text] [Related]
53. Duty cycle and modulation efficiency of two-channel Hadamard transform time-of-flight mass spectrometry. Yoon OK; Zuleta IA; Kimmel JR; Robbins MD; Zare RN J Am Soc Mass Spectrom; 2005 Nov; 16(11):1888-901. PubMed ID: 16198595 [TBL] [Abstract][Full Text] [Related]
54. Hadamard transform time-of-flight mass spectrometry: more signal, more of the time. Zare RN; Fernández FM; Kimmel JR Angew Chem Int Ed Engl; 2003 Jan; 42(1):30-5. PubMed ID: 19757587 [TBL] [Abstract][Full Text] [Related]
55. Pushing the Resolving Power of Tyndall-Powell Gate Ion Mobility Spectrometry over 100 with No Sensitivity Loss for Multiple Ion Species. Chen C; Chen H; Li H Anal Chem; 2017 Dec; 89(24):13398-13404. PubMed ID: 29188986 [TBL] [Abstract][Full Text] [Related]
56. [Rapid screening of 14 antibacterial drugs in anti-acne cosmetics using ion mobility spectrometry coupled with solid-phase extraction]. Xue G; Wang Q; Cao L; Sun J; Yang G; Feng Y; Fang F Se Pu; 2022 Dec; 40(12):1119-1127. PubMed ID: 36450352 [TBL] [Abstract][Full Text] [Related]
57. Design and performance of an atmospheric pressure ion mobility Fourier transform ion cyclotron resonance mass spectrometer. Tang X; Bruce JE; Hill HH Rapid Commun Mass Spectrom; 2007; 21(7):1115-22. PubMed ID: 17318922 [TBL] [Abstract][Full Text] [Related]
58. Reliable Detection of Chemical Warfare Agents Using High Kinetic Energy Ion Mobility Spectrometry. Schaefer C; Allers M; Hitzemann M; Nitschke A; Kobelt T; Mörtel M; Schröder S; Ficks A; Zimmermann S J Am Soc Mass Spectrom; 2024 Aug; 35(8):2008-2019. PubMed ID: 39013159 [TBL] [Abstract][Full Text] [Related]
59. Simulation of Cluster Dynamics of Proton-Bound Water Clusters in a High Kinetic Energy Ion-Mobility Spectrometer. Erdogdu D; Wißdorf W; Allers M; Kirk AT; Kersten H; Zimmermann S; Benter T J Am Soc Mass Spectrom; 2021 Sep; 32(9):2436-2450. PubMed ID: 34342982 [TBL] [Abstract][Full Text] [Related]
60. Optimization of a liquid chromatography-ion mobility-high resolution mass spectrometry platform for untargeted lipidomics and application to HepaRG cell extracts. da Silva KM; Iturrospe E; Heyrman J; Koelmel JP; Cuykx M; Vanhaecke T; Covaci A; van Nuijs ALN Talanta; 2021 Dec; 235():122808. PubMed ID: 34517665 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]