These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 37276632)
1. Gasification characteristics and synergistic effects of typical organic solid wastes under CO Ma Y; Zha Z; Huang C; Ge Z; Zeng M; Zhang H Waste Manag; 2023 Aug; 168():35-44. PubMed ID: 37276632 [TBL] [Abstract][Full Text] [Related]
2. Kinetic analyses and synergistic effects of CO Edreis EMA; Li X; Luo G; Sharshir SW; Yao H Bioresour Technol; 2018 Nov; 267():54-62. PubMed ID: 30014998 [TBL] [Abstract][Full Text] [Related]
3. Syngas production from fast pyrolysis and steam gasification of mixed food waste. Singh D; Raizada A; Yadav S Waste Manag Res; 2022 Nov; 40(11):1669-1675. PubMed ID: 35475387 [TBL] [Abstract][Full Text] [Related]
4. TG-MS analysis and kinetic study for thermal decomposition of six representative components of municipal solid waste under steam atmosphere. Zhang J; Chen T; Wu J; Wu J Waste Manag; 2015 Sep; 43():152-61. PubMed ID: 26066574 [TBL] [Abstract][Full Text] [Related]
5. Equilibrium model analysis of waste plastics gasification using CO Kannan P; Lakshmanan G; Al Shoaibi A; Srinivasakannan C Waste Manag Res; 2017 Dec; 35(12):1247-1253. PubMed ID: 29100482 [TBL] [Abstract][Full Text] [Related]
6. Thermogravimetric and thermovolumetric study of municipal solid waste (MSW) and wood biomass for hydrogen-rich gas production: a case study of Tashkent region. Tursunov O; Śpiewak K; Abduganiev N; Yang Y; Kustov A; Karimov I Environ Sci Pollut Res Int; 2023 Nov; 30(52):112631-112643. PubMed ID: 37837588 [TBL] [Abstract][Full Text] [Related]
7. Study of the effect mechanism of municipal solid waste gasification conditions on the production of H Xiang YL; Lin Q; Cai L; Guan Y; Lu J; Liu W J Environ Manage; 2019 Jan; 230():301-310. PubMed ID: 30292018 [TBL] [Abstract][Full Text] [Related]
8. Combustion characteristics and gasification kinetics of Brazilian municipal solid waste subjected to different atmospheres by thermogravimetric analysis. Thangarasu V; de Oliveira MR; Alves Oliveira LA; Aladawi S; Avila I Bioresour Technol; 2024 Jul; 403():130906. PubMed ID: 38806134 [TBL] [Abstract][Full Text] [Related]
9. Experimental study of biomass waste gasification: Impact of atmosphere and catalysts presence on quality of syngas production. Sieradzka M; Mlonka-Mędrala A; Błoniarz A; Magdziarz A Bioresour Technol; 2024 Feb; 394():130290. PubMed ID: 38218409 [TBL] [Abstract][Full Text] [Related]
10. Recent progress on CO-rich syngas production via CO Chan YH; Syed Abdul Rahman SNF; Lahuri HM; Khalid A Environ Pollut; 2021 Jun; 278():116843. PubMed ID: 33711630 [TBL] [Abstract][Full Text] [Related]
11. A theoretical study on municipal solid waste plasma gasification. Tavares R; Ramos A; Rouboa A Waste Manag; 2019 May; 90():37-45. PubMed ID: 31088672 [TBL] [Abstract][Full Text] [Related]
12. Response surface methodology approach for optimizing the gasification of spent pot lining (SPL) waste materials. Nemmour A; Ghenai C; Inayat A; Janajreh I Environ Sci Pollut Res Int; 2023 Jan; 30(4):8883-8898. PubMed ID: 36418819 [TBL] [Abstract][Full Text] [Related]
13. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents. Agon N; Hrabovský M; Chumak O; Hlína M; Kopecký V; Masláni A; Bosmans A; Helsen L; Skoblja S; Van Oost G; Vierendeels J Waste Manag; 2016 Jan; 47(Pt B):246-55. PubMed ID: 26210232 [TBL] [Abstract][Full Text] [Related]
14. Biohydrogen production from catalytic conversion of food waste via steam and air gasification using eggshell- and homo-type Ni/Al Valizadeh S; Lam SS; Ko CH; Lee SH; Farooq A; Yu YJ; Jeon JK; Jung SC; Rhee GH; Park YK Bioresour Technol; 2021 Jan; 320(Pt B):124313. PubMed ID: 33197736 [TBL] [Abstract][Full Text] [Related]
15. Advancing hydrogen generation: Kinetic insights and process refinement for sorption-enhanced steam gasification of biomass utilizing waste carbide slag. Zou L; Guo S; Wang Y; Shao H; Wu A; Zhao Q J Environ Manage; 2024 Aug; 366():121717. PubMed ID: 38981274 [TBL] [Abstract][Full Text] [Related]
16. Characterization of pyrolysis products of high-ash excavated-waste and its char gasification reactivity and kinetics under a steam atmosphere. Zaini IN; García López C; Pretz T; Yang W; Jönsson PG Waste Manag; 2019 Sep; 97():149-163. PubMed ID: 31447022 [TBL] [Abstract][Full Text] [Related]
17. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF. Hwang IH; Kobayashi J; Kawamoto K Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576 [TBL] [Abstract][Full Text] [Related]
18. Optimizing hydrogen gas production from genetically modified rice straw by steam co-gasification. Zahra ACA; Okura H; Chaerusani V; Alahakoon AMYW; Rizkiana J; Kang DJ; Abudula A; Guan G Waste Manag; 2024 Jul; 184():132-141. PubMed ID: 38815287 [TBL] [Abstract][Full Text] [Related]
19. Steam co-gasification of horticultural waste and sewage sludge: Product distribution, synergistic analysis and optimization. Hu Q; Dai Y; Wang CH Bioresour Technol; 2020 Apr; 301():122780. PubMed ID: 31978702 [TBL] [Abstract][Full Text] [Related]
20. (Co-)gasification characteristics and synergistic effect of hydrothermal carbonized solid/liquid products derived from fresh kitchen waste. Zeng M; Ge Z; Ma Y; Zha Z; Wu Y; Zhang H Waste Manag; 2022 Dec; 154():74-83. PubMed ID: 36209720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]