BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37276746)

  • 1. Keep your cool: Overwintering physiology in response to urbanization in the acorn ant, Temnothorax curvispinosus.
    Prileson EG; Clark J; Diamond SE; Lenard A; Medina-Báez OA; Yilmaz AR; Martin RA
    J Therm Biol; 2023 May; 114():103591. PubMed ID: 37276746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remarkable insensitivity of acorn ant morphology to temperature decouples the evolution of physiological tolerance from body size under urban heat islands.
    Yilmaz AR; Chick LD; Perez A; Strickler SA; Vaughn S; Martin RA; Diamond SE
    J Therm Biol; 2019 Oct; 85():102426. PubMed ID: 31657738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities.
    Diamond SE; Chick LD; Perez A; Strickler SA; Martin RA
    Proc Biol Sci; 2018 Jul; 285(1882):. PubMed ID: 30051828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental winter warming modifies thermal performance and primes acorn ants for warm weather.
    MacLean HJ; Penick CA; Dunn RR; Diamond SE
    J Insect Physiol; 2017 Jul; 100():77-81. PubMed ID: 28549655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pedal to the metal: Cities power evolutionary divergence by accelerating metabolic rate and locomotor performance.
    Chick LD; Waters JS; Diamond SE
    Evol Appl; 2021 Jan; 14(1):36-52. PubMed ID: 33519955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of plasticity in the city: urban acorn ants can better tolerate more rapid increases in environmental temperature.
    Diamond SE; Chick LD; Perez A; Strickler SA; Zhao C
    Conserv Physiol; 2018; 6(1):coy030. PubMed ID: 29977563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In a nutshell, a reciprocal transplant experiment reveals local adaptation and fitness trade-offs in response to urban evolution in an acorn-dwelling ant.
    Martin RA; Chick LD; Garvin ML; Diamond SE
    Evolution; 2021 Apr; 75(4):876-887. PubMed ID: 33586171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution, not transgenerational plasticity, explains the adaptive divergence of acorn ant thermal tolerance across an urban-rural temperature cline.
    Martin RA; Chick LD; Yilmaz AR; Diamond SE
    Evol Appl; 2019 Sep; 12(8):1678-1687. PubMed ID: 31462922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urban heat islands advance the timing of reproduction in a social insect.
    Chick LD; Strickler SA; Perez A; Martin RA; Diamond SE
    J Therm Biol; 2019 Feb; 80():119-125. PubMed ID: 30784475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urban physiology: city ants possess high heat tolerance.
    Angilletta MJ; Wilson RS; Niehaus AC; Sears MW; Navas CA; Ribeiro PL
    PLoS One; 2007 Feb; 2(2):e258. PubMed ID: 17327918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using physiology to predict the responses of ants to climatic warming.
    Diamond SE; Penick CA; Pelini SL; Ellison AM; Gotelli NJ; Sanders NJ; Dunn RR
    Integr Comp Biol; 2013 Dec; 53(6):965-74. PubMed ID: 23892370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of plasticity, but not evolutionary divergence, in the thermal limits of a highly successful urban butterfly.
    Lenard A; Diamond SE
    J Insect Physiol; 2024 Jun; 155():104648. PubMed ID: 38754698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of urbanization and temperature on thermal tolerance, foraging performance, and competition in cavity-dwelling ants.
    Harris BA; Stevens DR; Mathis KA
    Ecol Evol; 2024 Feb; 14(2):e10923. PubMed ID: 38384820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can behaviour and physiology mitigate effects of warming on ectotherms? A test in urban ants.
    Youngsteadt E; Prado SG; Keleher KJ; Kirchner M
    J Anim Ecol; 2023 Mar; 92(3):568-579. PubMed ID: 36642830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of overwintering temperature on the survival of the black garden ant (Lasius niger).
    Haatanen MK; van Ooik T; Sorvari J
    J Therm Biol; 2015; 49-50():112-8. PubMed ID: 25774034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold resistance depends on acclimation and behavioral caste in a temperate ant.
    Modlmeier AP; Pamminger T; Foitzik S; Scharf I
    Naturwissenschaften; 2012 Oct; 99(10):811-9. PubMed ID: 22955370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The heat is on: Genetic adaptation to urbanization mediated by thermal tolerance and body size.
    Brans KI; Jansen M; Vanoverbeke J; Tüzün N; Stoks R; De Meester L
    Glob Chang Biol; 2017 Dec; 23(12):5218-5227. PubMed ID: 28614592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for locally adaptive metabolic rates among ant populations along an elevational gradient.
    Shik JZ; Arnan X; Oms CS; Cerdá X; Boulay R
    J Anim Ecol; 2019 Aug; 88(8):1240-1249. PubMed ID: 31077366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chill coma temperatures appear similar along a latitudinal gradient, in contrast to divergent chill coma recovery times, in two widespread ant species.
    Maysov A
    J Exp Biol; 2014 Aug; 217(Pt 15):2650-8. PubMed ID: 25079891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.