These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37276790)

  • 1. Investigating membrane-binding properties of lipoxygenases using surface plasmon resonance.
    Rohlik DL; Patel E; Gilbert NC; Offenbacher AR; Garcia BL
    Biochem Biophys Res Commun; 2023 Aug; 670():47-54. PubMed ID: 37276790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational Dynamics of Lipoxygenases and Their Interaction with Biological Membranes.
    Erba F; Mei G; Minicozzi V; Sabatucci A; Di Venere A; Maccarrone M
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing conformational changes in lipoxygenases upon membrane binding: fine-tuning by the active site inhibitor ETYA.
    Di Venere A; Nicolai E; Ivanov I; Dainese E; Adel S; Angelucci BC; Kuhn H; Maccarrone M; Mei G
    Biochim Biophys Acta; 2014 Jan; 1841(1):1-10. PubMed ID: 24012824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional evaluation mammalian and plant lipoxygenases upon association with nanodics as membrane mimetics.
    Ulusan S; Sheraj I; Stehling S; Ivanov I; Das A; Kühn H; Banerjee S
    Biophys Chem; 2022 Sep; 288():106855. PubMed ID: 35849958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the surfaces generated by liposome binding to the modified dextran matrix of a surface plasmon resonance sensor chip.
    Erb EM; Chen X; Allen S; Roberts CJ; Tendler SJ; Davies MC; Forsén S
    Anal Biochem; 2000 Apr; 280(1):29-35. PubMed ID: 10805517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Industrial potential of lipoxygenases.
    Heshof R; de Graaff LH; Villaverde JJ; Silvestre AJ; Haarmann T; Dalsgaard TK; Buchert J
    Crit Rev Biotechnol; 2016 Aug; 36(4):665-74. PubMed ID: 25641326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance in protein-membrane interactions.
    Besenicar M; Macek P; Lakey JH; Anderluh G
    Chem Phys Lipids; 2006 Jun; 141(1-2):169-78. PubMed ID: 16584720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Plasmon Resonance Monitoring of Mono-Rhamnolipid Interaction with Phospholipid-Based Liposomes.
    Belkilani M; Shokouhi M; Farre C; Chevalier Y; Minot S; Bessueille F; Abdelghani A; Jaffrezic-Renault N; Chaix C
    Langmuir; 2021 Jul; 37(26):7975-7985. PubMed ID: 34170134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical Characterization of 13-Lipoxygenases of
    Maynard D; Chibani K; Schmidtpott S; Seidel T; Spross J; Viehhauser A; Dietz KJ
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the Interaction between Pesticides and a Cell Membrane Model by Surface Plasmon Resonance Spectroscopy Analysis.
    Moriwaki H; Yamada K; Nakanishi H
    J Agric Food Chem; 2017 Jul; 65(26):5390-5396. PubMed ID: 28602084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
    Patching SG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capture of intact liposomes on biacore sensor chips for protein-membrane interaction studies.
    Hodnik V; Anderluh G
    Methods Mol Biol; 2010; 627():201-11. PubMed ID: 20217623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid membrane-binding properties of daptomycin using surface plasmon resonance.
    Kinouchi H; Onishi M; Kamimori H
    Anal Sci; 2013; 29(3):297-301. PubMed ID: 23474718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid membrane-binding properties of amphotericin B deoxycholate (Fungizone) using surface plasmon resonance.
    Oka M; Kamimori H
    Anal Sci; 2013; 29(7):697-702. PubMed ID: 23842411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Plasmon Resonance for Measuring Interactions of Proteins with Lipids and Lipid Membranes.
    Šakanovič A; Hodnik V; Anderluh G
    Methods Mol Biol; 2019; 2003():53-70. PubMed ID: 31218613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon resonance for measuring interactions of proteins with lipid membranes.
    Hodnik V; Anderluh G
    Methods Mol Biol; 2013; 974():23-36. PubMed ID: 23404270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure.
    Lee TH; Hirst DJ; Kulkarni K; Del Borgo MP; Aguilar MI
    Chem Rev; 2018 Jun; 118(11):5392-5487. PubMed ID: 29793341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of 11R-lipoxygenase is fully Ca(2+)-dependent and controlled by the phospholipid composition of the target membrane.
    Järving R; Lõokene A; Kurg R; Siimon L; Järving I; Samel N
    Biochemistry; 2012 Apr; 51(15):3310-20. PubMed ID: 22448896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian arachidonate 15-lipoxygenases structure, function, and biological implications.
    Kuhn H; Walther M; Kuban RJ
    Prostaglandins Other Lipid Mediat; 2002 Aug; 68-69():263-90. PubMed ID: 12432923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of lipid membrane surfaces for molecular interaction studies by surface plasmon resonance biosensors.
    Besenicar MP; Anderluh G
    Methods Mol Biol; 2010; 627():191-200. PubMed ID: 20217622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.