These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37277360)

  • 21. Highly Conductive Hydrogel Polymer Fibers toward Promising Wearable Thermoelectric Energy Harvesting.
    Liu J; Jia Y; Jiang Q; Jiang F; Li C; Wang X; Liu P; Liu P; Hu F; Du Y; Xu J
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44033-44040. PubMed ID: 30523679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biocompatible Conductive Polymers with High Conductivity and High Stretchability.
    He H; Zhang L; Guan X; Cheng H; Liu X; Yu S; Wei J; Ouyang J
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26185-26193. PubMed ID: 31257845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Extremely Stretchable and Self-Healable Supramolecular Polymer Network.
    Zhang H; Yang S; Yang Z; Wang D; Han J; Li C; Zhu C; Xu J; Zhao N
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4499-4507. PubMed ID: 33433191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmentally Tolerant Ionic Hydrogel with High Power Density for Low-Grade Heat Harvesting.
    Chen J; Shi C; Wu L; Deng Y; Wang Y; Zhang L; Zhang Q; Peng F; Tao XM; Zhang M; Zeng W
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34714-34721. PubMed ID: 35876495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.
    Park T; Na J; Kim B; Kim Y; Shin H; Kim E
    ACS Nano; 2015 Dec; 9(12):11830-9. PubMed ID: 26308669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermoelectric properties of PEDOT nanowire/PEDOT hybrids.
    Zhang K; Qiu J; Wang S
    Nanoscale; 2016 Apr; 8(15):8033-41. PubMed ID: 27021525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlling the thermoelectric properties of polymers: application to PEDOT and polypyrrole.
    Culebras M; Uriol B; Gómez CM; Cantarero A
    Phys Chem Chem Phys; 2015 Jun; 17(23):15140-5. PubMed ID: 25990660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasensitive Flexible Thermal Sensor Arrays based on High-Thermopower Ionic Thermoelectric Hydrogel.
    Han Y; Wei H; Du Y; Li Z; Feng SP; Huang B; Xu D
    Adv Sci (Weinh); 2023 Sep; 10(25):e2302685. PubMed ID: 37395372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chitosan derivative-based self-healable hydrogels with enhanced mechanical properties by high-density dynamic ionic interactions.
    Yuan N; Xu L; Xu B; Zhao J; Rong J
    Carbohydr Polym; 2018 Aug; 193():259-267. PubMed ID: 29773380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of PEDOT films in ionic liquid supercapacitors: demonstration as a power source for polymer electrochromic devices.
    Österholm AM; Shen DE; Dyer AL; Reynolds JR
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13432-40. PubMed ID: 24328278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultra-stretchable and healable hydrogel-based triboelectric nanogenerators for energy harvesting and self-powered sensing.
    Li G; Li L; Zhang P; Chang C; Xu F; Pu X
    RSC Adv; 2021 May; 11(28):17437-17444. PubMed ID: 35479675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Thermoelectric Properties of Spongy PEDOT Films and 3D-Nanonetworks by Electropolymerization.
    Manzano CV; Caballero-Calero O; Serrano A; Resende PM; Martín-González M
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels.
    Zhong M; Liu XY; Shi FK; Zhang LQ; Wang XP; Cheetham AG; Cui H; Xie XM
    Soft Matter; 2015 Jun; 11(21):4235-41. PubMed ID: 25892460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PEDOT Composite with Ionic Liquid and Its Application to Deformable Electrochemical Transistors.
    Lee S; Jang J; Lee S; Jung D; Shin M; Son D
    Gels; 2022 Aug; 8(9):. PubMed ID: 36135246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Stretchable and Self-Healable Supercapacitor with Reduced Graphene Oxide Based Fiber Springs.
    Wang S; Liu N; Su J; Li L; Long F; Zou Z; Jiang X; Gao Y
    ACS Nano; 2017 Feb; 11(2):2066-2074. PubMed ID: 28112894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced Electrical Conductivity and Mechanical Properties of Stretchable Thermoelectric Generators Formed by Doped Semiconducting Polymer/Elastomer Blends.
    Chang Y; Huang YH; Lin PS; Hong SH; Tung SH; Liu CL
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):3764-3777. PubMed ID: 38226590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesizing a Healable Stretchable Transparent Conductor.
    Li J; Qi S; Liang J; Li L; Xiong Y; Hu W; Pei Q
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14140-9. PubMed ID: 26062004
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent progress in self-healable ion gels.
    Tamate R; Watanabe M
    Sci Technol Adv Mater; 2020 Jun; 21(1):388-401. PubMed ID: 32939164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hierarchical Response Network Boosts Solvent-Free Ionic Conductive Elastomers with Extreme Stretchability, Healability, and Recyclability for Ionic Sensors.
    Zhang B; Feng Q; Song H; Zhang X; Zhang C; Liu T
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8404-8416. PubMed ID: 35112831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh.
    Wang J; Wu B; Wei P; Sun S; Wu P
    Nat Commun; 2022 Jul; 13(1):4411. PubMed ID: 35906238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.