These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 37277628)

  • 21. Genetic Code Expansion in Pseudomonas putida KT2440.
    Gao T; Guo J; Niu W
    Methods Mol Biol; 2024; 2760():209-217. PubMed ID: 38468091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Pyrrolysyl-tRNA Synthetase Activity can be Improved by a P188 Mutation that Stabilizes the Full-Length Enzyme.
    Cho CC; Blankenship LR; Ma X; Xu S; Liu W
    J Mol Biol; 2022 Apr; 434(8):167453. PubMed ID: 35033561
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid Identification of Functional Pyrrolysyl-tRNA Synthetases via Fluorescence-Activated Cell Sorting.
    Lin AE; Lin Q
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30577609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineered triply orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs enable the genetic encoding of three distinct non-canonical amino acids.
    Dunkelmann DL; Willis JCW; Beattie AT; Chin JW
    Nat Chem; 2020 Jun; 12(6):535-544. PubMed ID: 32472101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Incorporating, Quantifying, and Leveraging Noncanonical Amino Acids in Yeast.
    Stieglitz JT; Van Deventer JA
    Methods Mol Biol; 2022; 2394():377-432. PubMed ID: 35094338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. tRNA
    Tharp JM; Ehnbom A; Liu WR
    RNA Biol; 2018; 15(4-5):441-452. PubMed ID: 28837402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methanomethylophilus alvus Mx1201 Provides Basis for Mutual Orthogonal Pyrrolysyl tRNA/Aminoacyl-tRNA Synthetase Pairs in Mammalian Cells.
    Meineke B; Heimgärtner J; Lafranchi L; Elsässer SJ
    ACS Chem Biol; 2018 Nov; 13(11):3087-3096. PubMed ID: 30260624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermophilic Pyrrolysyl-tRNA Synthetase Mutants for Enhanced Mammalian Genetic Code Expansion.
    Hu L; Qin X; Huang Y; Cao W; Wang C; Wang Y; Ling X; Chen H; Wu D; Lin Y; Liu T
    ACS Synth Biol; 2020 Oct; 9(10):2723-2736. PubMed ID: 32931698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast.
    Stieglitz JT; Van Deventer JA
    ACS Synth Biol; 2022 Jul; 11(7):2284-2299. PubMed ID: 35793554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic Incorporation of Noncanonical Amino Acids Using Two Mutually Orthogonal Quadruplet Codons.
    Hankore ED; Zhang L; Chen Y; Liu K; Niu W; Guo J
    ACS Synth Biol; 2019 May; 8(5):1168-1174. PubMed ID: 30995842
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic Encoding of Three Distinct Noncanonical Amino Acids Using Reprogrammed Initiator and Nonsense Codons.
    Tharp JM; Vargas-Rodriguez O; Schepartz A; Söll D
    ACS Chem Biol; 2021 Apr; 16(4):766-774. PubMed ID: 33723984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolving Orthogonal Suppressor tRNAs To Incorporate Modified Amino Acids.
    Maranhao AC; Ellington AD
    ACS Synth Biol; 2017 Jan; 6(1):108-119. PubMed ID: 27600875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Efficient Opal-Suppressor Tryptophanyl Pair Creates New Routes for Simultaneously Incorporating up to Three Distinct Noncanonical Amino Acids into Proteins in Mammalian Cells.
    Osgood AO; Zheng Y; Roy SJS; Biris N; Hussain M; Loynd C; Jewel D; Italia JS; Chatterjee A
    Angew Chem Int Ed Engl; 2023 May; 62(19):e202219269. PubMed ID: 36905325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using a quadruplet codon to expand the genetic code of an animal.
    Xi Z; Davis L; Baxter K; Tynan A; Goutou A; Greiss S
    Nucleic Acids Res; 2022 May; 50(9):4801-4812. PubMed ID: 34882769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering Pyrrolysyl-tRNA Synthetase for the Incorporation of Non-Canonical Amino Acids with Smaller Side Chains.
    Koch NG; Goettig P; Rappsilber J; Budisa N
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous directed evolution of aminoacyl-tRNA synthetases.
    Bryson DI; Fan C; Guo LT; Miller C; Söll D; Liu DR
    Nat Chem Biol; 2017 Dec; 13(12):1253-1260. PubMed ID: 29035361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code.
    Nehring S; Budisa N; Wiltschi B
    PLoS One; 2012; 7(4):e31992. PubMed ID: 22493661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.
    Guo LT; Wang YS; Nakamura A; Eiler D; Kavran JM; Wong M; Kiessling LL; Steitz TA; O'Donoghue P; Söll D
    Proc Natl Acad Sci U S A; 2014 Nov; 111(47):16724-9. PubMed ID: 25385624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of mammalian cell logic gates controlled by unnatural amino acids.
    Mills EM; Barlow VL; Jones AT; Tsai YH
    Cell Rep Methods; 2021 Oct; 1(6):100073. PubMed ID: 35474893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives.
    Wang YS; Russell WK; Wang Z; Wan W; Dodd LE; Pai PJ; Russell DH; Liu WR
    Mol Biosyst; 2011 Mar; 7(3):714-7. PubMed ID: 21234492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.