These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37277926)

  • 1. Long-term (statistically learnt) and short-term (inter-trial) distractor-location effects arise at different pre- and post-selective processing stages.
    Qiu N; Zhang B; Allenmark F; Nasemann J; Tsai SY; Müller HJ; Shi Z
    Psychophysiology; 2023 Oct; 60(10):e14351. PubMed ID: 37277926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning What Is Irrelevant or Relevant: Expectations Facilitate Distractor Inhibition and Target Facilitation through Distinct Neural Mechanisms.
    van Moorselaar D; Slagter HA
    J Neurosci; 2019 Aug; 39(35):6953-6967. PubMed ID: 31270162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of target and distractor processing in visual search: evidence from event-related brain potentials.
    Hilimire MR; Mounts JR; Parks NA; Corballis PM
    Neurosci Lett; 2011 May; 495(3):196-200. PubMed ID: 21457759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-capture processes contribute to statistical learning of distractor locations in visual search.
    Sauter M; Hanning NM; Liesefeld HR; Müller HJ
    Cortex; 2021 Feb; 135():108-126. PubMed ID: 33360756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cueing distraction: electrophysiological evidence for anticipatory active suppression of distractor location.
    Heuer A; Schubö A
    Psychol Res; 2020 Nov; 84(8):2111-2121. PubMed ID: 31201532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attentional capture is modulated by stimulus saliency in visual search as evidenced by event-related potentials and alpha oscillations.
    Forschack N; Gundlach C; Hillyard S; Müller MM
    Atten Percept Psychophys; 2023 Apr; 85(3):685-704. PubMed ID: 36525202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to inhibit a distractor location? Statistical learning versus active, top-down suppression.
    Wang B; Theeuwes J
    Atten Percept Psychophys; 2018 May; 80(4):860-870. PubMed ID: 29476331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saliency affects attentional capture and suppression of abrupt-onset and color singleton distractors: Evidence from event-related potential studies.
    Chen X; Xu B; Chen Y; Zeng X; Zhang Y; Fu S
    Psychophysiology; 2023 Aug; 60(8):e14290. PubMed ID: 36946491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning to suppress likely distractor locations in visual search is driven by the local distractor frequency.
    Allenmark F; Zhang B; Shi Z; Müller HJ
    J Exp Psychol Hum Percept Perform; 2022 Nov; 48(11):1250-1278. PubMed ID: 36107665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Region-based shielding of visual search from salient distractors: Target detection is impaired with same- but not different-dimension distractors.
    Sauter M; Liesefeld HR; Zehetleitner M; Müller HJ
    Atten Percept Psychophys; 2018 Apr; 80(3):622-642. PubMed ID: 29299850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probability cueing of singleton-distractor locations in visual search: Priority-map- versus dimension-based inhibition?
    Zhang B; Allenmark F; Liesefeld HR; Shi Z; Müller HJ
    J Exp Psychol Hum Percept Perform; 2019 Sep; 45(9):1146-1163. PubMed ID: 31144860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distractor suppression does and does not depend on pre-distractor alpha-band activity.
    Redding ZV; Fiebelkorn IC
    bioRxiv; 2023 Jul; ():. PubMed ID: 37502869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. No reliable effect of task-irrelevant cross-modal statistical regularities on distractor suppression.
    Jagini KK; Sunny MM
    Cortex; 2023 Apr; 161():77-92. PubMed ID: 36913824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. When experience with scenes foils attentional orienting: ERP evidence against flexible target-context mapping in visual search.
    Zinchenko A; Geyer T; Zang X; Shi Z; Müller HJ; Conci M
    Cortex; 2024 Jun; 175():41-53. PubMed ID: 38703715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological and behavioral evidence for the attention capture and suppression failure of irrelevant singleton in test anxiety.
    Hu C; Song J; Hong Y; Zhou R
    J Psychiatr Res; 2023 May; 161():386-392. PubMed ID: 37015159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separate Cue- and Alpha-Related Mechanisms for Distractor Suppression.
    Redding ZV; Fiebelkorn IC
    J Neurosci; 2024 Jun; 44(25):. PubMed ID: 38729761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct Mechanisms for Distractor Suppression and Target Facilitation.
    Noonan MP; Adamian N; Pike A; Printzlau F; Crittenden BM; Stokes MG
    J Neurosci; 2016 Feb; 36(6):1797-807. PubMed ID: 26865606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distractor suppression leads to reduced flanker interference.
    Ivanov Y; Theeuwes J
    Atten Percept Psychophys; 2021 Feb; 83(2):624-636. PubMed ID: 33269439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical Learning of Frequent Distractor Locations in Visual Search Involves Regional Signal Suppression in Early Visual Cortex.
    Zhang B; Weidner R; Allenmark F; Bertleff S; Fink GR; Shi Z; Müller HJ
    Cereb Cortex; 2022 Jun; 32(13):2729-2744. PubMed ID: 34727169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial suppression due to statistical regularities in a visual detection task.
    van Moorselaar D; Theeuwes J
    Atten Percept Psychophys; 2022 Feb; 84(2):450-458. PubMed ID: 34773244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.