These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 37278377)
1. Conformational dynamics of trypsin in the presence of caffeic acid: a spectroscopic and computational investigation. Yadollahi E; Shareghi B; Farhadian S; Hashemi Shahraki F J Biomol Struct Dyn; 2024 Apr; 42(6):3108-3117. PubMed ID: 37278377 [TBL] [Abstract][Full Text] [Related]
2. Dissection of binding of trypsin to its natural inhibitor Gensenoside-Rg1 using spectroscopic methods and molecular modeling. Lin J; Xu Y; Wang Y; Huang S; Li J; Meti MD; Xu X; Hu Z; Liu J; He Z; Xu H J Biomol Struct Dyn; 2019 Sep; 37(15):4070-4079. PubMed ID: 30449253 [TBL] [Abstract][Full Text] [Related]
3. New insights on the binding of butyl-paraben to trypsin: experimental and computational approaches. Mostafavi ES; Asoodeh A; Chamani J J Biomol Struct Dyn; 2023 Dec; 41(20):10302-10314. PubMed ID: 36510660 [TBL] [Abstract][Full Text] [Related]
4. Investigation of interaction between dexamethasone/pheniramine and trypsin by fluorescence, UV-vis, CD, and molecular docking. Calapoglu F; Sahin S; Ozmen I; Ozbek Yazici S J Biomol Struct Dyn; 2023 Apr; 41(6):2202-2210. PubMed ID: 35098895 [TBL] [Abstract][Full Text] [Related]
5. Exploring the structural basis of conformational alterations of myoglobin in the presence of spermine through computational modeling, molecular dynamics simulations, and spectroscopy methods. Eslami-Farsani R; Farhadian S; Shareghi B J Biomol Struct Dyn; 2022 May; 40(8):3581-3594. PubMed ID: 33308044 [TBL] [Abstract][Full Text] [Related]
6. Interaction between caffeic acid phenethyl ester and protease: monitoring by spectroscopic and molecular docking approaches. Nai X; Chen Y; Zhang Q; Hao S; Xuan H; Liu J Luminescence; 2022 Jun; 37(6):1025-1036. PubMed ID: 35445518 [TBL] [Abstract][Full Text] [Related]
7. Dissection of the binding of hydrogen peroxide to trypsin using spectroscopic methods and molecular modeling. Song W; Yu Z; Hu X; Liu R Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():286-93. PubMed ID: 25228036 [TBL] [Abstract][Full Text] [Related]
8. Interaction of phenolic acids with trypsin: Experimental and molecular modeling studies. Liu B; Xiao H; Li J; Geng S; Ma H; Liang G Food Chem; 2017 Aug; 228():1-6. PubMed ID: 28317701 [TBL] [Abstract][Full Text] [Related]
9. On-line immobilized trypsin microreactor for evaluating inhibitory activity of phenolic acids by capillary electrophoresis and molecular docking. Zhang H; Wu ZY; Wang YZ; Zhou DD; Yang FQ; Li DQ Food Chem; 2020 Apr; 310():125823. PubMed ID: 31757489 [TBL] [Abstract][Full Text] [Related]
10. Toxic interaction between acid yellow 23 and trypsin: spectroscopic methods coupled with molecular docking. Wang J; Liu R; Qin P J Biochem Mol Toxicol; 2012 Sep; 26(9):360-7. PubMed ID: 22807329 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the interactions between Fulvic acid and Trypsin with Spectroscopic and Molecular Docking technology. Sun J; Wang X; Nie Z; Ma L; Sai H; Cheng J; Liu Y; Duan J Chem Biodivers; 2024 Feb; 21(2):e202301366. PubMed ID: 38073179 [TBL] [Abstract][Full Text] [Related]
12. Binding parameters and molecular dynamics of Trypsin-Acid Yellow 17 complexation as a function of concentration. Yadollahi E; Shareghi B; Farhadian S Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121589. PubMed ID: 35872431 [TBL] [Abstract][Full Text] [Related]
13. Fluorescence spectroscopy and molecular simulation on the interaction of caffeic acid with human serum albumin. Xiang Y; Duan L; Ma Q; Lv Z; Ruohua Z; Zhang Z Luminescence; 2016 Dec; 31(8):1496-1502. PubMed ID: 27072745 [TBL] [Abstract][Full Text] [Related]
14. The study on interactions between levofloxacin and model proteins by using multi-spectroscopic and molecular docking methods. Fang Q; Guo C; Wang Y; Liu Y J Biomol Struct Dyn; 2018 Jun; 36(8):2032-2044. PubMed ID: 28604271 [TBL] [Abstract][Full Text] [Related]
15. Noncovalent interactions of bovine trypsin with curcumin and effect on stability, structure, and function. Rajabi M; Farhadian S; Shareghi B; Asgharzadeh S; Momeni L Colloids Surf B Biointerfaces; 2019 Nov; 183():110287. PubMed ID: 31476687 [TBL] [Abstract][Full Text] [Related]
16. Trypsin inhibition by Ligupurpuroside B as studied using spectroscopic, CD, and molecular docking techniques. Meti MD; Lin J; Wang Y; Wu Z; Xu H; Xu X; Han Q; Ying M; Hu Z; He Z J Biomol Struct Dyn; 2019 Aug; 37(13):3379-3387. PubMed ID: 30213239 [TBL] [Abstract][Full Text] [Related]
17. Comparative Studies on the Interaction of Spermidine with Bovine Trypsin by Multispectroscopic and Docking Methods. Momeni L; Shareghi B; Saboury AA; Farhadian S J Phys Chem B; 2016 Sep; 120(36):9632-41. PubMed ID: 27541356 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the Interactions between Minocycline Hydrochloride and Trypsin with Spectroscopic and Molecular Docking Technology. Wang X; Sun J; Ma L; Nie Z; Sai H; Cheng J; Duan J Molecules; 2023 Mar; 28(6):. PubMed ID: 36985629 [TBL] [Abstract][Full Text] [Related]
19. A molecular simulation and spectroscopic approach to the binding affinity between trypsin and 2-propanol and protein conformation. Momeni L; Shareghi B; Farhadian S; Vaziri S; Saboury AA; Raisi F Int J Biol Macromol; 2018 Nov; 119():477-485. PubMed ID: 30059735 [TBL] [Abstract][Full Text] [Related]
20. A comprehensive insight into the effects of caffeic acid (CA) on pepsin: Multi-spectroscopy and MD simulations methods. Hashemi-Shahraki F; Shareghi B; Farhadian S; Yadollahi E Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 289():122240. PubMed ID: 36527971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]