BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37278378)

  • 1. Enhancing the Production of Xenocoumacin 1 in
    Qin Y; Jia F; Zheng X; Li X; Duan J; Li B; Shen H; Yang X; Ren J; Li G
    J Agric Food Chem; 2023 Jun; 71(23):8959-8968. PubMed ID: 37278378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CpxR negatively regulates the production of xenocoumacin 1, a dihydroisocoumarin derivative produced by Xenorhabdus nematophila.
    Zhang S; Fang X; Tang Q; Ge J; Wang Y; Zhang X
    Microbiologyopen; 2019 Feb; 8(2):e00674. PubMed ID: 29888873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the yield of Xenocoumacin 1 in Xenorhabdus nematophila YL001 by optimizing the fermentation process.
    Han Y; Zhang S; Wang Y; Gao J; Han J; Yan Z; Ta Y; Wang Y
    Sci Rep; 2024 Jun; 14(1):13506. PubMed ID: 38866882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila.
    Park D; Ciezki K; van der Hoeven R; Singh S; Reimer D; Bode HB; Forst S
    Mol Microbiol; 2009 Sep; 73(5):938-49. PubMed ID: 19682255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of antimicrobial activity and xenocoumacins biosynthesis by pH in Xenorhabdus nematophila.
    Guo S; Zhang S; Fang X; Liu Q; Gao J; Bilal M; Wang Y; Zhang X
    Microb Cell Fact; 2017 Nov; 16(1):203. PubMed ID: 29141647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cpxR on the growth characteristics and antibiotic production of Xenorhabdus nematophila.
    Guo S; Wang Z; Liu B; Gao J; Fang X; Tang Q; Bilal M; Wang Y; Zhang X
    Microb Biotechnol; 2019 May; 12(3):447-458. PubMed ID: 30623566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xenorhabdus khoisanae SB10 produces Lys-rich PAX lipopeptides and a Xenocoumacin in its antimicrobial complex.
    Dreyer J; Rautenbach M; Booysen E; van Staden AD; Deane SM; Dicks LMT
    BMC Microbiol; 2019 Jun; 19(1):132. PubMed ID: 31195965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the Yield of Xenocoumacin 1 Enabled by In Situ Product Removal.
    Dong Y; Li X; Duan J; Qin Y; Yang X; Ren J; Li G
    ACS Omega; 2020 Aug; 5(32):20391-20398. PubMed ID: 32832792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifungal Activity and Mechanism of Xenocoumacin 1, a Natural Product from
    Zhang S; Han Y; Wang L; Han J; Yan Z; Wang Y; Wang Y
    J Fungi (Basel); 2024 Feb; 10(3):. PubMed ID: 38535184
    [No Abstract]   [Full Text] [Related]  

  • 10. Optimization of fermentation condition for antibiotic production by Xenorhabdus nematophila with response surface methodology.
    Wang YH; Feng JT; Zhang Q; Zhang X
    J Appl Microbiol; 2008 Mar; 104(3):735-44. PubMed ID: 17953686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of secondary metabolites in establishment of the mutualistic partnership between Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae.
    Singh S; Orr D; Divinagracia E; McGraw J; Dorff K; Forst S
    Appl Environ Microbiol; 2015 Jan; 81(2):754-64. PubMed ID: 25398871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new type of pyrrolidine biosynthesis is involved in the late steps of xenocoumacin production in Xenorhabdus nematophila.
    Reimer D; Luxenburger E; Brachmann AO; Bode HB
    Chembiochem; 2009 Aug; 10(12):1997-2001. PubMed ID: 19598185
    [No Abstract]   [Full Text] [Related]  

  • 13. Development of an Efficient and Seamless Genetic Manipulation Method for
    Duan J; Yuan B; Jia F; Li X; Chen C; Li G
    J Agric Food Chem; 2024 Jan; 72(1):274-283. PubMed ID: 38109418
    [No Abstract]   [Full Text] [Related]  

  • 14. Xenocoumacin 2 reduces protein biosynthesis and inhibits inflammatory and angiogenesis-related processes in endothelial cells.
    Erkoc P; Schmitt M; Ingelfinger R; Bischoff-Kont I; Kopp L; Bode HB; Schiffmann S; Fürst R
    Biomed Pharmacother; 2021 Aug; 140():111765. PubMed ID: 34058438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Odilorhabdin Antibiotic Biosynthetic Cluster and Acetyltransferase Self-Resistance Locus Are Niche and Species Specific.
    Lanois-Nouri A; Pantel L; Fu J; Houard J; Ogier JC; Polikanov YS; Racine E; Wang H; Gaudriault S; Givaudan A; Gualtieri M
    mBio; 2022 Feb; 13(1):e0282621. PubMed ID: 35012352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global transcriptional responses of Bacillus subtilis to xenocoumacin 1.
    Zhou T; Zeng H; Qiu D; Yang X; Wang B; Chen M; Guo L; Wang S
    J Appl Microbiol; 2011 Sep; 111(3):652-62. PubMed ID: 21699632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A natural prodrug activation mechanism in nonribosomal peptide synthesis.
    Reimer D; Pos KM; Thines M; Grün P; Bode HB
    Nat Chem Biol; 2011 Sep; 7(12):888-90. PubMed ID: 21926994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the pixB gene in Xenorhabdus nematophila and discovery of a new gene family.
    Lucas J; Goetsch M; Fischer M; Forst S
    Microbiology (Reading); 2018 Apr; 164(4):495-508. PubMed ID: 29498622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does the Future of Antibiotics Lie in Secondary Metabolites Produced by Xenorhabdus spp.? A Review.
    Booysen E; Dicks LMT
    Probiotics Antimicrob Proteins; 2020 Dec; 12(4):1310-1320. PubMed ID: 32844362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea.
    Fang XL; Li ZZ; Wang YH; Zhang X
    J Appl Microbiol; 2011 Jul; 111(1):145-54. PubMed ID: 21554568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.