These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 37278582)

  • 1. High-throughput computational investigation of protein electrostatics and cavity for SAM-dependent methyltransferases.
    Jurich C; Yang ZJ
    Protein Sci; 2023 Jul; 32(7):e4690. PubMed ID: 37278582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Analogs of S-Adenosyl-L-Methionine in Studies of Methyltransferases].
    Rudenko AY; Mariasina SS; Sergiev PV; Polshakov VI
    Mol Biol (Mosk); 2022; 56(2):296-319. PubMed ID: 35403621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of a S-adenosyl-L-methionine-dependent O-methyltransferase-like enzyme from Aspergillus flavus.
    Liao L; Zhou Y; Peng T; Guo Y; Zhao Y; Zeng Z
    Proteins; 2021 Feb; 89(2):185-192. PubMed ID: 32875607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications.
    Struck AW; Thompson ML; Wong LS; Micklefield J
    Chembiochem; 2012 Dec; 13(18):2642-55. PubMed ID: 23180741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases.
    Joshi CP; Chiang VL
    Plant Mol Biol; 1998 Jul; 37(4):663-74. PubMed ID: 9687070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseases and genetic polymorphisms.
    Li J; Sun C; Cai W; Li J; Rosen BP; Chen J
    Mutat Res Rev Mutat Res; 2021; 788():108396. PubMed ID: 34893161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analysis of a putative SAM-dependent methyltransferase, YtqB, from Bacillus subtilis.
    Park SC; Song WS; Yoon SI
    Biochem Biophys Res Commun; 2014 Apr; 446(4):921-6. PubMed ID: 24637210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AdoMet-dependent methylation, DNA methyltransferases and base flipping.
    Cheng X; Roberts RJ
    Nucleic Acids Res; 2001 Sep; 29(18):3784-95. PubMed ID: 11557810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refolding of a fully functional flavivirus methyltransferase revealed that S-adenosyl methionine but not S-adenosyl homocysteine is copurified with flavivirus methyltransferase.
    Brecher MB; Li Z; Zhang J; Chen H; Lin Q; Liu B; Li H
    Protein Sci; 2015 Jan; 24(1):117-28. PubMed ID: 25352331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bisubstrate analogues as structural tools to investigate m
    Oerum S; Catala M; Atdjian C; Brachet F; Ponchon L; Barraud P; Iannazzo L; Droogmans L; Braud E; Ethève-Quelquejeu M; Tisné C
    RNA Biol; 2019 Jun; 16(6):798-808. PubMed ID: 30879411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the DpnM DNA adenine methyltransferase from the DpnII restriction system of streptococcus pneumoniae bound to S-adenosylmethionine.
    Tran PH; Korszun ZR; Cerritelli S; Springhorn SS; Lacks SA
    Structure; 1998 Dec; 6(12):1563-75. PubMed ID: 9862809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SAM/SAH Analogs as Versatile Tools for SAM-Dependent Methyltransferases.
    Zhang J; Zheng YG
    ACS Chem Biol; 2016 Mar; 11(3):583-97. PubMed ID: 26540123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analogs of
    Rudenko AY; Mariasina SS; Sergiev PV; Polshakov VI
    Mol Biol; 2022; 56(2):229-250. PubMed ID: 35440827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rossmann-Fold Methyltransferases: Taking a "β-Turn" around Their Cofactor, S-Adenosylmethionine.
    Chouhan BPS; Maimaiti S; Gade M; Laurino P
    Biochemistry; 2019 Jan; 58(3):166-170. PubMed ID: 30406995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalysis by solvation rather than the desolvation effect: exploring the catalytic efficiency of SAM-dependent chlorinase.
    Araújo E; Lima AH; Lameira J
    Phys Chem Chem Phys; 2017 Aug; 19(32):21350-21356. PubMed ID: 28762403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA methyltransferases: mechanistic models derived from kinetic analysis.
    Malygin EG; Hattman S
    Crit Rev Biochem Mol Biol; 2012; 47(2):97-193. PubMed ID: 22260147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural bases for substrate recognition and activity in Meaban virus nucleoside-2'-O-methyltransferase.
    Mastrangelo E; Bollati M; Milani M; Selisko B; Peyrane F; Canard B; Grard G; de Lamballerie X; Bolognesi M
    Protein Sci; 2007 Jun; 16(6):1133-45. PubMed ID: 17473012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of SAM-dependent methyltransferase from Pyrococcus horikoshii.
    Pampa KJ; Madan Kumar S; Hema MK; Kumara K; Naveen S; Kunishima N; Lokanath NK
    Acta Crystallogr F Struct Biol Commun; 2017 Dec; 73(Pt 12):706-712. PubMed ID: 29199993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zika Virus Methyltransferase: Structure and Functions for Drug Design Perspectives.
    Coutard B; Barral K; Lichière J; Selisko B; Martin B; Aouadi W; Lombardia MO; Debart F; Vasseur JJ; Guillemot JC; Canard B; Decroly E
    J Virol; 2017 Mar; 91(5):. PubMed ID: 28031359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radical-mediated enzymatic methylation: a tale of two SAMS.
    Zhang Q; van der Donk WA; Liu W
    Acc Chem Res; 2012 Apr; 45(4):555-64. PubMed ID: 22097883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.