These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37279136)

  • 1. Developing a New Phylogeny-Driven Random Forest Model for Functional Metagenomics.
    Wassan JT; Wang H; Zheng H
    IEEE Trans Nanobioscience; 2023 Oct; 22(4):763-770. PubMed ID: 37279136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phy-PMRFI: Phylogeny-Aware Prediction of Metagenomic Functions Using Random Forest Feature Importance.
    Wassan JT; Wang H; Browne F; Zheng H
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):273-282. PubMed ID: 31021803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogeny-based classification of microbial communities.
    Tanaseichuk O; Borneman J; Jiang T
    Bioinformatics; 2014 Feb; 30(4):449-56. PubMed ID: 24369151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretable metric learning in comparative metagenomics: The adaptive Haar-like distance.
    Gorman ED; Lladser ME
    PLoS Comput Biol; 2024 May; 20(5):e1011543. PubMed ID: 38768195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piphillin: Improved Prediction of Metagenomic Content by Direct Inference from Human Microbiomes.
    Iwai S; Weinmaier T; Schmidt BL; Albertson DG; Poloso NJ; Dabbagh K; DeSantis TZ
    PLoS One; 2016; 11(11):e0166104. PubMed ID: 27820856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling microbial strains in urban environments using metagenomic sequencing data.
    Zolfo M; Asnicar F; Manghi P; Pasolli E; Tett A; Segata N
    Biol Direct; 2018 May; 13(1):9. PubMed ID: 29743119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Massive metagenomic data analysis using abundance-based machine learning.
    Harris ZN; Dhungel E; Mosior M; Ahn TH
    Biol Direct; 2019 Aug; 14(1):12. PubMed ID: 31370905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating genome-based phylogeny and functional similarity into diversity assessments helps to resolve a global collection of human gut metagenomes.
    Youngblut ND; de la Cuesta-Zuluaga J; Ley RE
    Environ Microbiol; 2022 Sep; 24(9):3966-3984. PubMed ID: 35049120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vikodak--A Modular Framework for Inferring Functional Potential of Microbial Communities from 16S Metagenomic Datasets.
    Nagpal S; Haque MM; Mande SS
    PLoS One; 2016; 11(2):e0148347. PubMed ID: 26848568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cultivation-independent genomes greatly expand taxonomic-profiling capabilities of mOTUs across various environments.
    Ruscheweyh HJ; Milanese A; Paoli L; Karcher N; Clayssen Q; Keller MI; Wirbel J; Bork P; Mende DR; Zeller G; Sunagawa S
    Microbiome; 2022 Dec; 10(1):212. PubMed ID: 36464731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PhyloPlus: a Universal Tool for Phylogenetic Interrogation of Metagenomic Communities.
    Huang X; Erickson DL; Meng J
    mBio; 2023 Feb; 14(1):e0345522. PubMed ID: 36645293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motif-Based Text Mining of Microbial Metagenome Redundancy Profiling Data for Disease Classification.
    Wang Y; Li R; Zhou Y; Ling Z; Guo X; Xie L; Liu L
    Biomed Res Int; 2016; 2016():6598307. PubMed ID: 27057545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VITCOMIC2: visualization tool for the phylogenetic composition of microbial communities based on 16S rRNA gene amplicons and metagenomic shotgun sequencing.
    Mori H; Maruyama T; Yano M; Yamada T; Kurokawa K
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):30. PubMed ID: 29560821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and accurate average genome size and 16S rRNA gene average copy number computation in metagenomic data.
    Pereira-Flores E; Glöckner FO; Fernandez-Guerra A
    BMC Bioinformatics; 2019 Sep; 20(1):453. PubMed ID: 31488068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences.
    Langille MG; Zaneveld J; Caporaso JG; McDonald D; Knights D; Reyes JA; Clemente JC; Burkepile DE; Vega Thurber RL; Knight R; Beiko RG; Huttenhower C
    Nat Biotechnol; 2013 Sep; 31(9):814-21. PubMed ID: 23975157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic evaluation of supervised machine learning for sample origin prediction using metagenomic sequencing data.
    Chen JC; Tyler AD
    Biol Direct; 2020 Dec; 15(1):29. PubMed ID: 33302990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolutionary signal in metagenome phyletic profiles predicts many gene functions.
    Vidulin V; Šmuc T; Džeroski S; Supek F
    Microbiome; 2018 Jul; 6(1):129. PubMed ID: 29991352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of machine learning techniques for creating urban microbial fingerprints.
    Ryan FJ
    Biol Direct; 2019 Aug; 14(1):13. PubMed ID: 31420049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2.
    Lu J; Salzberg SL
    Microbiome; 2020 Aug; 8(1):124. PubMed ID: 32859275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison Between Full-Length 16S rRNA Metabarcoding and Whole Metagenome Sequencing Suggests the Use of Either Is Suitable for Large-Scale Microbiome Studies.
    Rubiola S; Macori G; Civera T; Fanning S; Mitchell M; Chiesa F
    Foodborne Pathog Dis; 2022 Jul; 19(7):495-504. PubMed ID: 35819265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.