BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 37279256)

  • 1. Deregulated kinase action in prostate cancer: molecular basis and therapeutic implications.
    Singh N; Heemers HV
    Endocr Relat Cancer; 2023 Sep; 30(9):. PubMed ID: 37279256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of intracrine androgen metabolism, androgen receptor and apoptosis in the survival and recurrence of prostate cancer during androgen deprivation therapy.
    Fiandalo MV; Wu W; Mohler JL
    Curr Drug Targets; 2013 Apr; 14(4):420-40. PubMed ID: 23565755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel insights in cell cycle dysregulation during prostate cancer progression.
    Ben-Salem S; Venkadakrishnan VB; Heemers HV
    Endocr Relat Cancer; 2021 May; 28(6):R141-R155. PubMed ID: 33830069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AR-dependent phosphorylation and phospho-proteome targets in prostate cancer.
    Venkadakrishnan VB; Ben-Salem S; Heemers HV
    Endocr Relat Cancer; 2020 Jun; 27(6):R193-R210. PubMed ID: 32276264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leading causes of castration-resistant prostate cancer.
    Lu M; Lu H; Kong Q
    Expert Rev Anticancer Ther; 2015 Apr; 15(4):425-32. PubMed ID: 25645203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the mechanisms of androgen deprivation resistance in prostate cancer at the molecular level.
    Karantanos T; Evans CP; Tombal B; Thompson TC; Montironi R; Isaacs WB
    Eur Urol; 2015 Mar; 67(3):470-9. PubMed ID: 25306226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches.
    Karantanos T; Corn PG; Thompson TC
    Oncogene; 2013 Dec; 32(49):5501-11. PubMed ID: 23752182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer.
    Wadosky KM; Koochekpour S
    Oncotarget; 2016 Sep; 7(39):64447-64470. PubMed ID: 27487144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Androgen receptor signaling in castration-resistant prostate cancer: a lesson in persistence.
    Coutinho I; Day TK; Tilley WD; Selth LA
    Endocr Relat Cancer; 2016 Dec; 23(12):T179-T197. PubMed ID: 27799360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T-LAK cell-originated protein kinase (TOPK) enhances androgen receptor splice variant (ARv7) and drives androgen-independent growth in prostate cancer.
    Alhawas L; Amin KS; Salla B; Banerjee PP
    Carcinogenesis; 2021 Apr; 42(3):423-435. PubMed ID: 33185682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing the Androgen Receptor Interactome in Prostate Cancer: Implications for Therapeutic Intervention.
    Dahiya UR; Heemers HV
    Cells; 2022 Mar; 11(6):. PubMed ID: 35326387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achieving resistance specificity in prostate cancer.
    Wadhwa B; Dumbre R
    Chem Biol Interact; 2016 Dec; 260():243-247. PubMed ID: 27720870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance.
    Edlind MP; Hsieh AC
    Asian J Androl; 2014; 16(3):378-86. PubMed ID: 24759575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-existing Castration-resistant Prostate Cancer-like Cells in Primary Prostate Cancer Promote Resistance to Hormonal Therapy.
    Cheng Q; Butler W; Zhou Y; Zhang H; Tang L; Perkinson K; Chen X; Jiang XS; McCall SJ; Inman BA; Huang J
    Eur Urol; 2022 May; 81(5):446-455. PubMed ID: 35058087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lineage plasticity-mediated therapy resistance in prostate cancer.
    Blee AM; Huang H
    Asian J Androl; 2019; 21(3):241-248. PubMed ID: 29900883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The androgen receptor is a negative regulator of eIF4E phosphorylation at S209: implications for the use of mTOR inhibitors in advanced prostate cancer.
    D'Abronzo LS; Bose S; Crapuchettes ME; Beggs RE; Vinall RL; Tepper CG; Siddiqui S; Mudryj M; Melgoza FU; Durbin-Johnson BP; deVere White RW; Ghosh PM
    Oncogene; 2017 Nov; 36(46):6359-6373. PubMed ID: 28745319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Prostate Cancer, the 'Tousled Way'.
    Bhoir S; De Benedetti A
    Int J Mol Sci; 2023 Jul; 24(13):. PubMed ID: 37446279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prostate cancer bone metastases acquire resistance to androgen deprivation via WNT5A-mediated BMP-6 induction.
    Lee GT; Kang DI; Ha YS; Jung YS; Chung J; Min K; Kim TH; Moon KH; Chung JM; Lee DH; Kim WJ; Kim IY
    Br J Cancer; 2014 Mar; 110(6):1634-44. PubMed ID: 24518599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunogenomic profiles associated with response to life-prolonging agents in prostate cancer.
    Conteduca V; Brighi N; Schepisi G; De Giorgi U
    Br J Cancer; 2023 Oct; 129(7):1050-1060. PubMed ID: 37443349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond the Androgen Receptor: The Sequence, the Mutants, and New Avengers in the Treatment of Castrate-Resistant Metastatic Prostate Cancer.
    Westaby D; Viscuse PV; Ravilla R; de la Maza MLDF; Hahn A; Sharp A; de Bono J; Aparicio A; Fleming MT
    Am Soc Clin Oncol Educ Book; 2021 Jun; 41():e190-e202. PubMed ID: 34061561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.