BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 37279443)

  • 21. Extracellular loop structures in silkworm ABCC transporters determine their specificities for
    Endo H; Tanaka S; Adegawa S; Ichino F; Tabunoki H; Kikuta S; Sato R
    J Biol Chem; 2018 Jun; 293(22):8569-8577. PubMed ID: 29666188
    [No Abstract]   [Full Text] [Related]  

  • 22. Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins.
    Xu C; Wang BC; Yu Z; Sun M
    Toxins (Basel); 2014 Sep; 6(9):2732-70. PubMed ID: 25229189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. No More Tears: Mining Sequencing Data for Novel
    Shikov AE; Malovichko YV; Skitchenko RK; Nizhnikov AA; Antonets KS
    Toxins (Basel); 2020 Mar; 12(3):. PubMed ID: 32210056
    [No Abstract]   [Full Text] [Related]  

  • 24. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests.
    Liu Y; Wang Y; Shu C; Lin K; Song F; Bravo A; Soberón M; Zhang J
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR-Mediated Knockout of the
    Wang X; Xu Y; Huang J; Jin W; Yang Y; Wu Y
    Toxins (Basel); 2020 Apr; 12(4):. PubMed ID: 32290427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Cry4B toxin of Bacillus thuringiensis subsp. israelensis kills Permethrin-resistant Anopheles gambiae, the principal vector of malaria.
    Ibrahim MA; Griko NB; Bulla LA
    Exp Biol Med (Maywood); 2013 Apr; 238(4):350-9. PubMed ID: 23760000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Cytocidal Spectrum of
    Mendoza-Almanza G; Esparza-Ibarra EL; Ayala-Luján JL; Mercado-Reyes M; Godina-González S; Hernández-Barrales M; Olmos-Soto J
    Toxins (Basel); 2020 May; 12(5):. PubMed ID: 32384723
    [No Abstract]   [Full Text] [Related]  

  • 28. Pore formation by Cry toxins.
    Soberón M; Pardo L; Muñóz-Garay C; Sánchez J; Gómez I; Porta H; Bravo A
    Adv Exp Med Biol; 2010; 677():127-42. PubMed ID: 20687486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insecticidal Activity of
    Domínguez-Arrizabalaga M; Villanueva M; Escriche B; Ancín-Azpilicueta C; Caballero P
    Toxins (Basel); 2020 Jun; 12(7):. PubMed ID: 32610662
    [No Abstract]   [Full Text] [Related]  

  • 30. Characterization of a Novel Insecticidal Protein Cry9Cb1 from Bacillus thuringiensis.
    Shan Y; Shu C; He K; Cheng X; Geng L; Xiang W; Zhang J
    J Agric Food Chem; 2019 Apr; 67(13):3781-3788. PubMed ID: 30865469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression.
    Guo L; Cheng Z; Qin J; Sun D; Wang S; Wu Q; Crickmore N; Zhou X; Bravo A; Soberón M; Guo Z; Zhang Y
    PLoS Genet; 2022 Feb; 18(2):e1010037. PubMed ID: 35113858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bt Cry1Ac resistance in Trichoplusia ni is conferred by multi-gene mutations.
    Ma X; Shao E; Chen W; Cotto-Rivera RO; Yang X; Kain W; Fei Z; Wang P
    Insect Biochem Mol Biol; 2022 Jan; 140():103678. PubMed ID: 34780898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New native Bacillus thuringiensis strains induce high insecticidal action against Culex pipiens pallens larvae and adults.
    Ma X; Hu J; Ding C; Portieles R; Xu H; Gao J; Du L; Gao X; Yue Q; Zhao L; Borrás-Hidalgo O
    BMC Microbiol; 2023 Apr; 23(1):100. PubMed ID: 37055727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the performance of multiple whole-genome sequence-based tools for the identification of
    Chung T; Salazar A; Harm G; Johler S; Carroll LM; Kovac J
    Appl Environ Microbiol; 2024 Apr; 90(4):e0177823. PubMed ID: 38470126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cloning and characterization of the Cry79Aa1 gene from a lepidopteran active strain of Bacillus thuringiensis.
    Ni H; Wang J; Shen Y; Yang X; Cui J; Ding M; Liu R; Li H; Gao J
    J Invertebr Pathol; 2021 Oct; 185():107657. PubMed ID: 34487747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacillus thuringiensis Cry1Ab Domain III β-22 Mutants with Enhanced Toxicity to Spodoptera frugiperda (J. E. Smith).
    Gómez I; Ocelotl J; Sánchez J; Aguilar-Medel S; Peña-Chora G; Lina-Garcia L; Bravo A; Soberón M
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32887720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Responses to Bt toxin Vip3Aa by pink bollworm larvae resistant or susceptible to Cry toxins.
    Tabashnik BE; Unnithan GC; Yelich AJ; Fabrick JA; Dennehy TJ; Carrière Y
    Pest Manag Sci; 2022 Oct; 78(10):3973-3979. PubMed ID: 35633103
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacillus thuringiensis Cry1Ac Protoxin and Activated Toxin Exert Differential Toxicity Due to a Synergistic Interplay of Cadherin with ABCC Transporters in the Cotton Bollworm.
    Liao C; Jin M; Cheng Y; Yang Y; Soberón M; Bravo A; Liu K; Xiao Y
    Appl Environ Microbiol; 2022 Apr; 88(7):e0250521. PubMed ID: 35262369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cry78Ba1, One Novel Crystal Protein from
    Cao B; Shu C; Geng L; Song F; Zhang J
    J Agric Food Chem; 2020 Feb; 68(8):2539-2546. PubMed ID: 32023056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacillus thuringiensis Cry34Ab1/Cry35Ab1 interactions with western corn rootworm midgut membrane binding sites.
    Li H; Olson M; Lin G; Hey T; Tan SY; Narva KE
    PLoS One; 2013; 8(1):e53079. PubMed ID: 23308139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.