These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 37279610)

  • 1. The Lyme disease spirochete, Borrelia burgdorferi, as a model vector-borne pathogen: insights on regulation of gene and protein expression.
    Stevenson B
    Curr Opin Microbiol; 2023 Aug; 74():102332. PubMed ID: 37279610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Consistent Tick-Vertebrate Infectious Cycle of the Lyme Disease Spirochete Enables Borrelia burgdorferi To Control Protein Expression by Monitoring Its Physiological Status.
    Stevenson B; Krusenstjerna AC; Castro-Padovani TN; Savage CR; Jutras BL; Saylor TC
    J Bacteriol; 2022 May; 204(5):e0060621. PubMed ID: 35380872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory protein BBD18 of the lyme disease spirochete: essential role during tick acquisition?
    Hayes BM; Dulebohn DP; Sarkar A; Tilly K; Bestor A; Ambroggio X; Rosa PA
    mBio; 2014 Apr; 5(2):e01017-14. PubMed ID: 24692636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics.
    Groshong AM; Blevins JS
    Adv Appl Microbiol; 2014; 86():41-143. PubMed ID: 24377854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Borrelia burgdorferi SpoVG DNA- and RNA-Binding Protein Modulates the Physiology of the Lyme Disease Spirochete.
    Savage CR; Jutras BL; Bestor A; Tilly K; Rosa PA; Tourand Y; Stewart PE; Brissette CA; Stevenson B
    J Bacteriol; 2018 Jun; 200(12):. PubMed ID: 29632088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DksA Controls the Response of the Lyme Disease Spirochete
    Boyle WK; Groshong AM; Drecktrah D; Boylan JA; Gherardini FC; Blevins JS; Samuels DS; Bourret TJ
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30478087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strict Conservation yet Non-Essential Nature of Plasmid Gene
    Kasumba IN; Tilly K; Lin T; Norris SJ; Rosa PA
    Microbiol Spectr; 2023 Jun; 11(3):e0047723. PubMed ID: 37010416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Lyme disease agent co-opts adiponectin receptor-mediated signaling in its arthropod vector.
    Tang X; Cao Y; Arora G; Hwang J; Sajid A; Brown CL; Mehta S; Marín-López A; Chuang YM; Wu MJ; Ma H; Pal U; Narasimhan S; Fikrig E
    Elife; 2021 Nov; 10():. PubMed ID: 34783654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent Proteins, Promoters, and Selectable Markers for Applications in the Lyme Disease Spirochete Borrelia burgdorferi.
    Takacs CN; Kloos ZA; Scott M; Rosa PA; Jacobs-Wagner C
    Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30315081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Gene and Protein Expression in the Lyme Disease Spirochete.
    Stevenson B; Seshu J
    Curr Top Microbiol Immunol; 2018; 415():83-112. PubMed ID: 29064060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BadR directly represses the expression of the glycerol utilization operon in the Lyme disease pathogen.
    Zhang J-J; Raghunandanan S; Wang Q; Priya R; Alanazi F; Lou Y; Yang XF
    J Bacteriol; 2024 Feb; 206(2):e0034023. PubMed ID: 38214528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal analysis of Borrelia burgdorferi Erp protein expression throughout the mammal-tick infectious cycle.
    Miller JC; von Lackum K; Babb K; McAlister JD; Stevenson B
    Infect Immun; 2003 Dec; 71(12):6943-52. PubMed ID: 14638783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two Distinct Mechanisms Govern RpoS-Mediated Repression of Tick-Phase Genes during Mammalian Host Adaptation by
    Grove AP; Liveris D; Iyer R; Petzke M; Rudman J; Caimano MJ; Radolf JD; Schwartz I
    mBio; 2017 Aug; 8(4):. PubMed ID: 28830947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quorum sensing by the Lyme disease spirochete.
    Stevenson B; von Lackum K; Wattier RL; McAlister JD; Miller JC; Babb K
    Microbes Infect; 2003 Sep; 5(11):991-7. PubMed ID: 12941391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LuxS-mediated quorum sensing in Borrelia burgdorferi, the lyme disease spirochete.
    Stevenson B; Babb K
    Infect Immun; 2002 Aug; 70(8):4099-105. PubMed ID: 12117917
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Aranjuez GF; Kuhn HW; Adams PP; Jewett MW
    Infect Immun; 2019 Mar; 87(5):. PubMed ID: 30782856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population bottlenecks during the infectious cycle of the Lyme disease spirochete Borrelia burgdorferi.
    Rego RO; Bestor A; Stefka J; Rosa PA
    PLoS One; 2014; 9(6):e101009. PubMed ID: 24979342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A surface enolase participates in Borrelia burgdorferi-plasminogen interaction and contributes to pathogen survival within feeding ticks.
    Nogueira SV; Smith AA; Qin JH; Pal U
    Infect Immun; 2012 Jan; 80(1):82-90. PubMed ID: 22025510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of arthritis-related protein (BBF01) on infectivity of Borrelia burgdorferi B31.
    Imai D; Holden K; Velazquez EM; Feng S; Hodzic E; Barthold SW
    BMC Microbiol; 2013 May; 13():100. PubMed ID: 23651628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals.
    Grimm D; Tilly K; Byram R; Stewart PE; Krum JG; Bueschel DM; Schwan TG; Policastro PF; Elias AF; Rosa PA
    Proc Natl Acad Sci U S A; 2004 Mar; 101(9):3142-7. PubMed ID: 14970347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.