These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 37279739)
1. MTM: a multi-task learning framework to predict individualized tissue gene expression profiles. He G; Chen M; Bian Y; Yang E Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37279739 [TBL] [Abstract][Full Text] [Related]
2. Multi-Modal Graph Learning for Disease Prediction. Zheng S; Zhu Z; Liu Z; Guo Z; Liu Y; Yang Y; Zhao Y IEEE Trans Med Imaging; 2022 Sep; 41(9):2207-2216. PubMed ID: 35286257 [TBL] [Abstract][Full Text] [Related]
3. DeePathology: Deep Multi-Task Learning for Inferring Molecular Pathology from Cancer Transcriptome. Azarkhalili B; Saberi A; Chitsaz H; Sharifi-Zarchi A Sci Rep; 2019 Nov; 9(1):16526. PubMed ID: 31712594 [TBL] [Abstract][Full Text] [Related]
4. Cooperative dual medical ontology representation learning for clinical assisted decision-making. Xu M; Zhu Z; Li Y; Zheng S; Li L; Wu H; Zhao Y Comput Biol Med; 2023 Sep; 163():107138. PubMed ID: 37329613 [TBL] [Abstract][Full Text] [Related]
5. Cross-type biomedical named entity recognition with deep multi-task learning. Wang X; Zhang Y; Ren X; Zhang Y; Zitnik M; Shang J; Langlotz C; Han J Bioinformatics; 2019 May; 35(10):1745-1752. PubMed ID: 30307536 [TBL] [Abstract][Full Text] [Related]
6. Bayesian integrative model for multi-omics data with missingness. Fang Z; Ma T; Tang G; Zhu L; Yan Q; Wang T; Celedón JC; Chen W; Tseng GC Bioinformatics; 2018 Nov; 34(22):3801-3808. PubMed ID: 30184058 [TBL] [Abstract][Full Text] [Related]
7. Network-based multi-task learning models for biomarker selection and cancer outcome prediction. Wang Z; He Z; Shah M; Zhang T; Fan D; Zhang W Bioinformatics; 2020 Mar; 36(6):1814-1822. PubMed ID: 31688914 [TBL] [Abstract][Full Text] [Related]
8. Blood-based multi-tissue gene expression inference with Bayesian ridge regression. Xu W; Liu X; Leng F; Li W Bioinformatics; 2020 Jun; 36(12):3788-3794. PubMed ID: 32277818 [TBL] [Abstract][Full Text] [Related]
9. Dataset-aware multi-task learning approaches for biomedical named entity recognition. Zuo M; Zhang Y Bioinformatics; 2020 Aug; 36(15):4331-4338. PubMed ID: 32415963 [TBL] [Abstract][Full Text] [Related]
10. Multi-modal deep learning improves grain yield prediction in wheat breeding by fusing genomics and phenomics. Togninalli M; Wang X; Kucera T; Shrestha S; Juliana P; Mondal S; Pinto F; Govindan V; Crespo-Herrera L; Huerta-Espino J; Singh RP; Borgwardt K; Poland J Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37220903 [TBL] [Abstract][Full Text] [Related]
12. A complete graph-based approach with multi-task learning for predicting synergistic drug combinations. Wang X; Zhu H; Chen D; Yu Y; Liu Q; Liu Q Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37261842 [TBL] [Abstract][Full Text] [Related]
13. A Fully Automated Multimodal MRI-Based Multi-Task Learning for Glioma Segmentation and IDH Genotyping. Cheng J; Liu J; Kuang H; Wang J IEEE Trans Med Imaging; 2022 Jun; 41(6):1520-1532. PubMed ID: 35020590 [TBL] [Abstract][Full Text] [Related]
14. MTTFsite: cross-cell type TF binding site prediction by using multi-task learning. Zhou J; Lu Q; Gui L; Xu R; Long Y; Wang H Bioinformatics; 2019 Dec; 35(24):5067-5077. PubMed ID: 31161194 [TBL] [Abstract][Full Text] [Related]
15. Utilization of the multi-theory model (MTM) of health behavior change to explain health behaviors: A systematic review. Kapukotuwa S; Nerida T; Batra K; Sharma M Health Promot Perspect; 2024; 14(2):121-135. PubMed ID: 39291044 [TBL] [Abstract][Full Text] [Related]
16. MUFFIN: multi-scale feature fusion for drug-drug interaction prediction. Chen Y; Ma T; Yang X; Wang J; Song B; Zeng X Bioinformatics; 2021 Sep; 37(17):2651-2658. PubMed ID: 33720331 [TBL] [Abstract][Full Text] [Related]
17. scPretrain: multi-task self-supervised learning for cell-type classification. Zhang R; Luo Y; Ma J; Zhang M; Wang S Bioinformatics; 2022 Mar; 38(6):1607-1614. PubMed ID: 34999749 [TBL] [Abstract][Full Text] [Related]
18. Improved survival analysis by learning shared genomic information from pan-cancer data. Kim S; Kim K; Choe J; Lee I; Kang J Bioinformatics; 2020 Jul; 36(Suppl_1):i389-i398. PubMed ID: 32657401 [TBL] [Abstract][Full Text] [Related]
19. TUGDA: task uncertainty guided domain adaptation for robust generalization of cancer drug response prediction from in vitro to in vivo settings. Peres da Silva R; Suphavilai C; Nagarajan N Bioinformatics; 2021 Aug; 37(Supplement_1):i76-i83. PubMed ID: 34000002 [TBL] [Abstract][Full Text] [Related]
20. DeepPHiC: predicting promoter-centered chromatin interactions using a novel deep learning approach. Agarwal A; Chen L Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36495179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]