BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37279866)

  • 1. Short tandem repeats of human genome are intrinsically unstable in cultured cells in vivo.
    Liu Y; Li J; Wu Q
    Gene; 2023 Aug; 877():147539. PubMed ID: 37279866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiling of Short-Tandem-Repeat Disease Alleles in 12,632 Human Whole Genomes.
    Tang H; Kirkness EF; Lippert C; Biggs WH; Fabani M; Guzman E; Ramakrishnan S; Lavrenko V; Kakaradov B; Hou C; Hicks B; Heckerman D; Och FJ; Caskey CT; Venter JC; Telenti A
    Am J Hum Genet; 2017 Nov; 101(5):700-715. PubMed ID: 29100084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide sequencing as a first-tier screening test for short tandem repeat expansions.
    Rajan-Babu IS; Peng JJ; Chiu R; ; ; Li C; Mohajeri A; Dolzhenko E; Eberle MA; Birol I; Friedman JM
    Genome Med; 2021 Aug; 13(1):126. PubMed ID: 34372915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of short tandem repeats in the Tibetan macaque genome based on resequencing data.
    Liu SX; Hou W; Zhang XY; Peng CJ; Yue BS; Fan ZX; Li J
    Zool Res; 2018 Jul; 39(4):291-300. PubMed ID: 29643326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid detection of expanded short tandem repeats in personal genomics using hybrid sequencing.
    Doi K; Monjo T; Hoang PH; Yoshimura J; Yurino H; Mitsui J; Ishiura H; Takahashi Y; Ichikawa Y; Goto J; Tsuji S; Morishita S
    Bioinformatics; 2014 Mar; 30(6):815-22. PubMed ID: 24215022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate typing of short tandem repeats from genome-wide sequencing data and its applications.
    Fungtammasan A; Ananda G; Hile SE; Su MS; Sun C; Harris R; Medvedev P; Eckert K; Makova KD
    Genome Res; 2015 May; 25(5):736-49. PubMed ID: 25823460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequencing and characterizing short tandem repeats in the human genome.
    Tanudisastro HA; Deveson IW; Dashnow H; MacArthur DG
    Nat Rev Genet; 2024 Jul; 25(7):460-475. PubMed ID: 38366034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STRScan: targeted profiling of short tandem repeats in whole-genome sequencing data.
    Tang H; Nzabarushimana E
    BMC Bioinformatics; 2017 Oct; 18(Suppl 11):398. PubMed ID: 28984185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic analysis of Southern Brazil subjects using the PowerSeq™ AUTO/Y system for short tandem repeat sequencing.
    Silva DSBS; Sawitzki FR; Scheible MKR; Bailey SF; Alho CS; Faith SA
    Forensic Sci Int Genet; 2018 Mar; 33():129-135. PubMed ID: 29275088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LUSTR: a new customizable tool for calling genome-wide germline and somatic short tandem repeat variants.
    Lu J; Toro C; Adams DR; ; Moreno CAM; Lee WP; Leung YY; Harms MB; Vardarajan B; Heinzen EL
    BMC Genomics; 2024 Jan; 25(1):115. PubMed ID: 38279154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STRetch: detecting and discovering pathogenic short tandem repeat expansions.
    Dashnow H; Lek M; Phipson B; Halman A; Sadedin S; Lonsdale A; Davis M; Lamont P; Clayton JS; Laing NG; MacArthur DG; Oshlack A
    Genome Biol; 2018 Aug; 19(1):121. PubMed ID: 30129428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short tandem repeat stutter model inferred from direct measurement of in vitro stutter noise.
    Raz O; Biezuner T; Spiro A; Amir S; Milo L; Titelman A; Onn A; Chapal-Ilani N; Tao L; Marx T; Feige U; Shapiro E
    Nucleic Acids Res; 2019 Mar; 47(5):2436-2445. PubMed ID: 30698816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short tandem repeats in human exons: a target for disease mutations.
    Madsen BE; Villesen P; Wiuf C
    BMC Genomics; 2008 Sep; 9():410. PubMed ID: 18789129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linked-read sequencing for detecting short tandem repeat expansions.
    Chiu R; Rajan-Babu IS; Birol I; Friedman JM
    Sci Rep; 2022 Jun; 12(1):9352. PubMed ID: 35672336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Next generation sequencing of STR artifacts produced from historical bone samples.
    Gorden EM; Sturk-Andreaggi K; Warnke-Sommer J; Hazelwood A; Barritt-Ross S; Marshall C
    Forensic Sci Int Genet; 2020 Nov; 49():102397. PubMed ID: 33017798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction of the Python script STRinNGS for analysis of STR regions in FASTQ or BAM files and expansion of the Danish STR sequence database to 11 STRs.
    Friis SL; Buchard A; Rockenbauer E; Børsting C; Morling N
    Forensic Sci Int Genet; 2016 Mar; 21():68-75. PubMed ID: 26722765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid multiplexed genotyping of simple tandem repeats using capture and high-throughput sequencing.
    Guilmatre A; Highnam G; Borel C; Mittelman D; Sharp AJ
    Hum Mutat; 2013 Sep; 34(9):1304-11. PubMed ID: 23696428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FDSTools: A software package for analysis of massively parallel sequencing data with the ability to recognise and correct STR stutter and other PCR or sequencing noise.
    Hoogenboom J; van der Gaag KJ; de Leeuw RH; Sijen T; de Knijff P; Laros JF
    Forensic Sci Int Genet; 2017 Mar; 27():27-40. PubMed ID: 27914278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of software for analysis of rare and common short tandem repeat (STR) variation using human genome sequences from clinical and population-based samples.
    Oketch JW; Wain LV; Hollox EJ
    PLoS One; 2024; 19(4):e0300545. PubMed ID: 38558075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of sequence variation at 30 autosomal STRs in Chinese Han and Tibetan populations.
    Wang Z; Wang L; Liu J; Ye J; Hou Y
    Electrophoresis; 2020 Feb; 41(3-4):194-201. PubMed ID: 31916267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.