These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37279868)

  • 1. Comprehensive powder flow characterization with reduced testing.
    Chendo C; Pinto JF; Paisana MC
    Int J Pharm; 2023 Jul; 642():123107. PubMed ID: 37279868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of mechanical dry coating with magnesium stearate on flowability and compactibility of plastically deforming microcrystalline cellulose powders.
    Koskela J; Morton DAV; Stewart PJ; Juppo AM; Lakio S
    Int J Pharm; 2018 Feb; 537(1-2):64-72. PubMed ID: 29198809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of colloidal silica on rheological properties of common pharmaceutical excipients.
    Majerová D; Kulaviak L; Růžička M; Štěpánek F; Zámostný P
    Eur J Pharm Biopharm; 2016 Sep; 106():2-8. PubMed ID: 27163240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating.
    Huang Z; Scicolone JV; Han X; Davé RN
    Int J Pharm; 2015 Jan; 478(2):447-55. PubMed ID: 25475016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. To Study Capping or Lamination Tendency of Tablets Through Evaluation of Powder Rheological Properties and Tablet Mechanical Properties of Directly Compressible Blends.
    Dudhat SM; Kettler CN; Dave RH
    AAPS PharmSciTech; 2017 May; 18(4):1177-1189. PubMed ID: 27422654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Pharmaceutical Powder Flowability using Shear Cell-Based Methods and Application of Jenike's Methodology.
    Jager PD; Bramante T; Luner PE
    J Pharm Sci; 2015 Nov; 104(11):3804-3813. PubMed ID: 26220285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composite method to quantify powder flow as a screening method in early tablet or capsule formulation development.
    Taylor MK; Ginsburg J; Hickey A; Gheyas F
    AAPS PharmSciTech; 2000 Jun; 1(3):E18. PubMed ID: 14727904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of particle shape on powder flowability of microcrystalline cellulose as determined using the vibration shear tube method.
    Horio T; Yasuda M; Matsusaka S
    Int J Pharm; 2014 Oct; 473(1-2):572-8. PubMed ID: 25079435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixing order of glidant and lubricant--influence on powder and tablet properties.
    Pingali K; Mendez R; Lewis D; Michniak-Kohn B; Cuitino A; Muzzio F
    Int J Pharm; 2011 May; 409(1-2):269-77. PubMed ID: 21356286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the relationship of inter-particle cohesiveness and bulk powder behavior: Flowability of pharmaceutical powders.
    Capece M; Silva KR; Sunkara D; Strong J; Gao P
    Int J Pharm; 2016 Sep; 511(1):178-189. PubMed ID: 27353729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of moisture on the flowability of pharmaceutical excipients.
    Crouter A; Briens L
    AAPS PharmSciTech; 2014 Feb; 15(1):65-74. PubMed ID: 24092523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. To evaluate the effect of various magnesium stearate polymorphs using powder rheology and thermal analysis.
    Okoye P; Wu SH; Dave RH
    Drug Dev Ind Pharm; 2012 Dec; 38(12):1470-8. PubMed ID: 22304483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the surface energy of lubricated pharmaceutical powders by inverse gas chromatography.
    Swaminathan V; Cobb J; Saracovan I
    Int J Pharm; 2006 Apr; 312(1-2):158-65. PubMed ID: 16469458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the mechanism of colloidal silica action to improve flow properties of pharmaceutical excipients.
    Tran DT; Majerová D; Veselý M; Kulaviak L; Ruzicka MC; Zámostný P
    Int J Pharm; 2019 Feb; 556():383-394. PubMed ID: 30529657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-line quantification of drug and excipients in cohesive powder blends by near infrared spectroscopy.
    Liew CV; Karande AD; Heng PW
    Int J Pharm; 2010 Feb; 386(1-2):138-48. PubMed ID: 19922776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A predictive integrated framework based on the radial basis function for the modelling of the flow of pharmaceutical powders.
    Alshafiee M; AlAlaween WH; Markl D; Soundaranathan M; Almajaan A; Walton K; Blunt L; Asare-Addo K
    Int J Pharm; 2019 Sep; 568():118542. PubMed ID: 31330171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of bulk powder flow performance using comprehensive particle size and particle shape distributions.
    Yu W; Muteki K; Zhang L; Kim G
    J Pharm Sci; 2011 Jan; 100(1):284-93. PubMed ID: 20572055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow characterization of a pharmaceutical excipient using the shear cell method.
    Salústio PJ; Inácio C; Nunes T; Sousa E Silva JP; Costa PC
    Pharm Dev Technol; 2020 Feb; 25(2):237-244. PubMed ID: 31718375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of lubricants on powder flowability for pharmaceutical application.
    Morin G; Briens L
    AAPS PharmSciTech; 2013 Sep; 14(3):1158-68. PubMed ID: 23897035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vegetable-derived magnesium stearate functionality evaluation by DM(3) approach.
    Haware RV; Dave VS; Kakarala B; Delaney S; Staton S; Munson E; Gupta MR; Stagner WC
    Eur J Pharm Sci; 2016 Jun; 89():115-24. PubMed ID: 27108117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.