These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 37279901)

  • 1. Mechanosensory Control of Locomotion in Animals and Robots: Moving Forward.
    Dallmann CJ; Dickerson BH; Simpson JH; Wyart C; Jayaram K
    Integr Comp Biol; 2023 Aug; 63(2):450-463. PubMed ID: 37279901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling legs for locomotion-insights from robotics and neurobiology.
    Buschmann T; Ewald A; von Twickel A; Büschges A
    Bioinspir Biomim; 2015 Jun; 10(4):041001. PubMed ID: 26119450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fins as Mechanosensors for Movement and Touch-Related Behaviors.
    Aiello BR; Hardy AR; Westneat MW; Hale ME
    Integr Comp Biol; 2018 Nov; 58(5):844-859. PubMed ID: 29917043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-scale soft-bodied robot with multimodal locomotion.
    Hu W; Lum GZ; Mastrangeli M; Sitti M
    Nature; 2018 Feb; 554(7690):81-85. PubMed ID: 29364873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insect walking and robotics.
    Delcomyn F
    Annu Rev Entomol; 2004; 49():51-70. PubMed ID: 14651456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of movement of underwater swimmers: Animals, simulated animates and swimming robots.
    Gordleeva SY; Kastalskiy IA; Tsybina YA; Ermolaeva AV; Hramov AE; Kazantsev VB
    Phys Life Rev; 2023 Dec; 47():211-244. PubMed ID: 38072505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling locomotion of a soft-bodied arthropod using inverse dynamics.
    Saunders F; Trimmer BA; Rife J
    Bioinspir Biomim; 2011 Mar; 6(1):016001. PubMed ID: 21160115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanosensation and Adaptive Motor Control in Insects.
    Tuthill JC; Wilson RI
    Curr Biol; 2016 Oct; 26(20):R1022-R1038. PubMed ID: 27780045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of an adaptive swing control into a neuromuscular human walking model.
    Song S; Desai R; Geyer H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4915-8. PubMed ID: 24110837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots.
    Ijspeert AJ; Crespi A; Cabelguen JM
    Neuroinformatics; 2005; 3(3):171-95. PubMed ID: 16077158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General Distributed Neural Control and Sensory Adaptation for Self-Organized Locomotion and Fast Adaptation to Damage of Walking Robots.
    Miguel-Blanco A; Manoonpong P
    Front Neural Circuits; 2020; 14():46. PubMed ID: 32973461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion.
    Karakasiliotis K; Thandiackal R; Melo K; Horvat T; Mahabadi NK; Tsitkov S; Cabelguen JM; Ijspeert AJ
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27358276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.
    Marras S; Porfiri M
    J R Soc Interface; 2012 Aug; 9(73):1856-68. PubMed ID: 22356819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central pattern generators for locomotion control in animals and robots: a review.
    Ijspeert AJ
    Neural Netw; 2008 May; 21(4):642-53. PubMed ID: 18555958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast small-scale soft electromagnetic robots.
    Mao G; Schiller D; Danninger D; Hailegnaw B; Hartmann F; Stockinger T; Drack M; Arnold N; Kaltenbrunner M
    Nat Commun; 2022 Aug; 13(1):4456. PubMed ID: 35945209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotics-inspired biology.
    Gravish N; Lauder GV
    J Exp Biol; 2018 Mar; 221(Pt 7):. PubMed ID: 29599417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Investigations into Using Motion Capture State Feedback for Real-Time Control of a Humanoid Robot.
    Popescu M; Mronga D; Bergonzani I; Kumar S; Kirchner F
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact dynamics in biped locomotion analysis: two modelling and implementation approaches.
    Addi K; Rodić AD
    Math Biosci Eng; 2010 Jul; 7(3):479-504. PubMed ID: 20578782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.